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Abstract

This paper concerns the problem of the delay-dependent robust stability of neutral
systems with mixed delays and time-varying structured uncertainties. A new method
based on linear matrix inequalities is presented that makes it easy to calculate both the
upper stability bounds on the delays and the free weighting matrices. Since the criteria
take the sizes of the neutral- and discrete-delays into account, it is less conservative than
previous methods. Numerical examples illustrate both the improvement this approach
provides over previous methods and the reciprocal influences between the neutral- and
discrete-delays.
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1 Introduction

There are two types of time delay systems: retarded and neutral. The retarded type ([4]) con-
tains delays only in its states (this kind of delay is called a discrete delay hereafter), whereas the
neutral type contains delays both in its states and in the derivatives of its states. Neutral-type
delay systems can be found in such places as population ecology, distributed networks contain-
ing lossless transmission lines, heat exchangers, robots in contact with rigid environments, etc
(e.g., [14], [16], [20]). Some new control technologies, like repetitive control, use the neutral
type through the insertion of an artificial neutral delay into a control loop in order to boost
the control performance for periodic signals ([10]). While the number of unstable poles is finite
in a retarded-delay system, it is infinite in a neutral-delay system. That makes a neutral-delay
system much harder to stabilize, and a considerable number of studies have been carried out
on the stability problem of the neutral type.

Although frequency-domain methods, such as the use of the Nyquist stability criterion,
are very effective in the analysis and synthesis of a control system, they cannot easily handle a
delay system that contains time-varying structured uncertainties (see [2] and [7]). Instead, the
Lyapunov-functional approach is widely employed because it is known to be effective; and linear

*E-mail address: yongh5683@163.net



matrix inequalities (LMIs) provide a powerful and efficient numerical tool for the calculations.
The stability criteria thus obtained can be divided into two categories: delay-independent
(12], [11], [19]) and delay-dependent (3], [5], [8], [9], [13], [17], [18], [21], [22], [23]). The
delay-independent type is independent of delay size; and as might be expected, it is generally
conservative, especially when a delay is short. On the other hand, studies of delay-dependent
criteria have focused mainly on identical delays in neutral and discrete terms ([3], [5], [9], [17],
[18], [22]). Some papers have also presented criteria that depend only on the size of discrete
delays, and not on the size of neutral delays ([8], [13], [21], [23]). They are called discrete-
delay-dependent and neutral-delay-independent stability criteria ([8]). Although a great deal
of effort has been devoted to the investigation of this subject, our knowlegde of neutral- and
discrete-delay-dependent stability criteria is still insufficient.

Recently, Park ([24]) presented a new method of obtaining a delay-dependent criterion
for a discrete-delay system, which was less conservative than previous methods. It was later
extended to a neutral-delay system ([22], [23]). However, that analysis used the Leibniz-Newton

formula in the derivative of a Lyapunov-Krasovskii functional, and replaced the term x(¢t — 7)
t

with z(t) — / %(s)ds in some places, but not in others, in order to make the Lyapunov-

t—r1

Krasovskii functional easier to handle. Clearly there must be a relationship between z(t — 7)
t

and z(t) — %(s)ds because both of them affect the result; but it was not taken into account.

t—71
In addition, even though the free weighting matrices for those terms are very important, no
method of selecting them was given.

This paper presents a new method of dealing with the problem of the delay-dependent sta-
bility of neutral systems. First, a criterion for a nominal neutral system is derived. This method

employs free weighting matrices to express the influences of, and the relationship between, the
t

terms z(t — 7) and z(t) — / Z(s)ds. The new criterion is based on LMIs, which makes the
t—T1
free weighting matrices easy to select. Since this criterion is both neutral-delay-dependent and

discrete-delay-dependent, it is less conservative than previous methods for mixed neutral- and
discrete-delays. The criterion obtained is then extend to a neutral system with time-varying
uncertainties. Finally, some numerical examples illustrate both the improvement the proposed
approach provides over previous methods and also the reciprocal influences between neutral
and discrete delays.

2 Notation and Preliminaries

Consider the time-varying structured uncertain neutral system

. { #(t) — Ci(t — ) = (A + AA1)z(t) + (B + ABE)a(t — 1), t > 0, O
" 2(t) = 9(t), te -1, 0],

where z(t) € R" is the state vector; 71, 72 > 0 are constant delays; 7 := maxz(n, 72), 4, B, C €
R™*™ are constant matrices; and the spectrum radius of the matrix C, p(C), satisfies p(C) < 1.
The initial condition ¢(t) denotes a continuous vector-valued initial function of ¢ € [—7, 0]. The
time-varying structured uncertainties are of the form

[AA(t) AB(t)] = DF(t) [Eq Ey], (2)

where D, E,, E, are constant matrices with appropriate dimensions; and F'(t) is an unknown,
real, and possibly time-varying matrix with Lsbesgue measurable elements, and its Euclidean
norm satisfies

IF®)] <1, Vt. (3)



First, the nominal system ¥y of ¥ is defined to be

| &(t) — Ci(t — m) = Ax(t) + Bz(t — ), t > 0,
>0 { z(t) = #(t), t € [-T, 0]. (4)

To obtain the main results, the following lemma is necessary to deal with the uncertainties.

Lemma 1 [®9 Given matrices Q =QT, H, E and R = RT > 0 of appropriate dimensions,
then
Q+HFE+ETFTHT <0,

for all F satisfying FTF < R, if and only if there exists an € > 0 such that

Q+e*?HHT + ¢ ?ETRET < 0.

3 Main Results

In order to simplify the treatment of the problem, the operator D: C([—72,0], R") — R™ is
first defined to be

Dxy = z(t) — Cz(t — 12).
The stability of D is defined as follows:

Definition 1 (/6]) The operator D is said to be stable if the zero solution of the homogeneous
difference equation

Dx; =0,t>0, xUZI/JE{(f)EC([—TQ, 0] D¢:0}

is uniformly asymptotically stable.

The necessary condition for the stability of ¥ and ¥ is that the operator D be stable ([6]).
The following theorem governs the nominal system .

Theorem 1 Given scalars 71 > 0 and 72 > 0, the nominal system Xq is asymptotically stable
if the operator D is stable and there exist positive definite matrices P = PT >0, Q; = QF >
0(i =1, 2) and R = RT > 0, non-negative definite matrices X;; = XL >0 and Y;; = VI >
0(G@=1,---,5) and any matrices X;; and Y;; (1 =1, ---, 5; 4 < j < 5) such that the following
LMIs are feasible.

;. P12 P13 Pyy ATS
(I){Q (I)QQ (1)23 @24 BTS
P = @{3 @gé P33 By 0 <0, (5)
‘I’1T4 ‘I’2T4 q’:{; Ty CTS
SA SB 0 SC -8




Yiu Y2 X3 Yiu Yis
Vih Yoo Yoy You Yos
Y3, Y35 | >0, (7)
Yé ng Y Yuo Yis
Vi Yol Vi Y Vs
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I
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)

where
(@11 =PA+ATP+ Q1+ Q2 + X15 + X5 + Y15 + Y + 1 X11 + V1,
®15 = PB— X15 + X& + Yok + 11 X12 + 12 Y12,
13 = -ATPC + XL + VL — Vi5 + 11 X153 + 2 Vi3,
®y = XZ;-) + Y475: + 11 X114 + Y14,
Bop = —Q1 — Xos — XL + 11 Xop + T2 Ya0,
By3 = —BTPC — XL — Va5 + 71 Xo3 + 72 Y03, (8)
®oy = — XL + 71 Xoq + 72You,
B33 = —Qo — Va5 — Yol + 71 X33 + Y33,
B3y = —VL + 11 X34 + 7234,

by = —R+ 11 Xyq + 1Yy,

\ S = R+T1X55 +7'2Y:r,5.

Proof: Choose the candidate Lyapunov functional to be

V(z;) = (Dx)TPDxy +ft . T(5)Qz(s)ds + ft T T(5)Qaz( )ds+ftt_T2 T (s)Ri(s)ds

/ / $) Xs5a(s dsd0+/ / $)Ys52(s)dsdb,
—71 Jt+0 —72 J 40
(9)

where P = PT > 0,Q; = QF >0(i =1, 2), R= RY > 0 are weighting matrices, and
Xs5 = XL >0, Y55 = Y.L > 0. All of these matrices need to be determined. Calculating the
derivative of V (x;) along the solutions of X yields

V(mt) = 2(Dz)TP[Az(t) + Bx(t — 1) + 2T ()Q12(t) — 2T (t — 1) Qrz(t — 71)
2T (4)Qex(t) — 2T (t — ) Qoz(t — ) + 2T () Ri(t) — 21 (t — =) Ri(t — 1)

T (t) X () — / () Xsi(s)ds

+1@T (1) Ys5(t) — /ti it (s)Yssi(s)ds.

(10)
Using the Leibniz-Newton formula, we can write
t
z(t—m11) = z(t) — / z(s)ds, (11)
t—71
t
z(t — 1) = z(t) — / z(s)ds (12)
t—T1o



According to Egs. (11) and (12), for any matrices X;5,Yi5 (i = 1, - -, 4), the following equations
hold.

2 [wT(t)X15 + 2T (t — 1) Xo5 + x(t — 72) X35 + (t — 72) X5 [m(t) —x(t—m7) — /t_ m(s)ds] =0,

(13)
t
2 [HZT(t)YLr, + HZT(t — Tl)Yés + .TT(t — 7'2)}/235 + ZU(t - TQ)Y45] |:£U(t) — a:(t — 7'2) — / ZU(S)de| =0.
t—
T 1w
On the other hand, for any appropriately dimensioned matrices X;;, Yi; (i =1, ---, 4; i <
j < 4), the following equation also holds.
T
z(t) A Aie Az A (t)
Z’(t — Tl) A%; A22 A23 A24 1‘(t — 7'1) 0 (15)
w(t—7'2) Afo) Ag% A33 A34 ZU(t—TQ) ’
@t —712) ATy Afy AL Au E(t —72)
where
Nj=n(Xij —Xij) +n(Y - Yy),i=1,---, 4 i <j <4

Then, we add the terms on the left sides of Eqs. (13)-(15) to V(z;); and consider the fact
that, for any r > 0 and any function f(¢),

| s =rso.

V() can be expressed as follows:
) t t
Vi) = 2T ()0 (t) / Tt ) Uz (t, 5)ds — / Tt 8)Z2(t, 8)ds,  (16)
t—71 t—7o

where
at)=[2T@t) aT(t—mn) aT(t—m) iT(t—mn)]", alts)=[F0t ()],

(I>11 + ATSA (I>12 + ATSB @13 @14 + ATSC

®T, + BTSA @ + BTSB ®y; &y + BTSC
®, ®3; 33 D3y ’

T, +CcTSA oI, +CcTSB @I, &4 +CTSC

0=

and U, 2, ®,;; (i =1,---,4;7 <j<4)and S are defined in (5)-(8). f 2 <0, ¥ >0 and = > 0,
then V' (z;) < 0 for any z;(t) # 0. Applying Schur complements, ® < 0 implies that @ < 0. So
Yo is asymptotically stable if the LMIs (5)-(7) are feasible. 1

Remark 1: In Theorem 1, the relationships between the terms z(t — 71) and z(t) —
t

t
/ z(s)ds, and z(t—72) and z(t) —/ #(s)ds have been considered through the free weight-
t—11 t—7o

ing matrices, X;5 and Y5 (i = 1, ---, 4); and the optimal weighting matrices can be selected by
solving the LMIs (6) and (7). In contrast, previous methods employed fixed weighting matrices,
which are not usually the optimal ones.

Remark 2: In previous methods, it is very hard to handle the case where the neutral and
discrete delays are different. As can be seen in Eq. (10), if we use the Leibniz-Newton formula
to replace z(t — 71 ) and x(t — 72) in Dz, in the first term on the right side, a multiplication term
involving two integrals appears, which is very difficult to deal with. To avoid this situation,



z(t — 1) was replaced in some places using the Leibniz-Newton formula, but was retained
z(t — 72) in Dz;. Consequently, when that method is applied to a system with different neutral
and discrete delays, the results are all discrete-delay-dependent and neutral-delay-independent.
In Theorem 1, both z(t — 71) and z(t — 72) in Dz, are retained, but the relationships between
the terms in the Leibniz-Newton formula are expressed in terms of free weighting matrices.
This method overcomes the difficulty that appears in previous studies when the neutral and
discrete delays are different. Thus, the criterion in Theorem 1 includes information on the sizes
of 7 and 75, which makes it both a neutral- and a discrete-delay-dependent stability criterion.
So, this method yields a less conservative criterion than previous discrete-delay-dependent and
neutral-delay-independent criteria.

From Theorem 1, we obtain a delay-dependent criterion for the neutral system X with
time-varying structured uncertainties.

Theorem 2 Given scalars 71 > 0 and 12 > 0, the neutral system ¥ with time-varying structured
uncertainties is robustly stable if the operator D is stable and there exist positive definite matrices
P=P'>0,Q: =QF >0( =1,2) and R = RT > 0, non-negative definite matrices
Xi=XL>0andY;; =Y >0 =1,---,5), any matrices X;; and Y;; (i =1,---,5;i < j < 5)
and a scalar A > 0 such that the LMIs (6), (7) and (17) are feasible.

b + /\EZEa P15 + )\E{Eb P13 Dy ATS PD
®T, + NEIE, ®u + \EE, &y &y BTS 0

o7, o7, B;; B3y 0 —CTPD
<0, 17
o7, o7, oL ®y CTS 0 (17)
SA SB 0 sC -8 SD
DTp 0 -DTPC 0 DTS -\
where ®;; (i =1, .-+, 4; i< j<4) and S are given in (8).

Proof: If A and B in (5) are replaced with A+ DF(t)E, and B + DF(t)Ej, respectively,
then (5) for the uncertain system ¥ is equivalent to the following condition.

4+ TR, +TTFT ()T, < 0. (18)

where
ry=[D'P 0 -D'PC 0 DTS ],

T.=[E. B 0 0 0].

By Lemma 1, a necessary and sufficient condition for (18) for ¥ is that there exists a A > 0
such that

&+ 2T, + ATIT, <. (19)
Applying Schur complements, we find that (19) is equivalent to (17). I

Remark 3: The above results can easily be extended to a neutral system with multiple
discrete- and neutral-delays.

4 Examples

This section presents some examples to illustrate the effectiveness of the method described
above.



Example 1([3], [5], [17]): Consider the stability of the nominal system X, with

-09 02 -1.1 —02 -02 0
A= { 01 -09 ] AL = { -0.1 -1.1 } 0= [ 02 -0.1 }

The upper bounds on the delays that guarantee the stability of this system in [17], [3] and [5]
arep =1 = 03, 71 = 1 = 0.5658 and ; = 7 = 0.74, respectively. In contrast, solving
LMIs (5)-(7) for 71 = 72, we obtained the maximum upper bounds on the allowable sizes to
be 71 = 7 = 1.6527, which are 450.9%, 192.1% and 123.3% larger than those in [17], [3] and
[5], respectively. This means that our method is less conservative than previous methods. On
the other hand, we also obtained the values for 7 # 5. Table 1 lists the upper bounds on 7
that guarantee the stability of the system for values of 7 from 0.1 to 1.6. It can be seen that
the upper bound on 7; decreases as 7» increases when 75 is small, but that 7 remains almost
unchanged when 7 > 1.2.

Table 1: Calculated allowable size of discrete delay 71 (Example 1).

T2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T 1.7100 | 1.6987 | 1.6883 | 1.6792 | 1.6718 | 1.6664 | 1.6624 | 1.6591 | 1.6564
T 1.0 1.1 1.2 1.3 14 1.5 1.6 1.6527 | 10000
T 1.6543 | 1.6531 | 1.6527 | 1.6527 | 1.6527 | 1.6527 | 1.6527 | 1.6527 | 1.6527

Example 2: Consider the robust stability of the system ¥ with

2 0 1 0 ¢ 0
A‘{ 0 —0.9]’3_{—1 —1}’0_[0 c}’050<1’

D=1 E,=E,=0.2I

Table 2 shows some calculation results obtained from Theorem 2, and compares them to those
obtained by the method of [9]. The values in the table are the maximum upper bounds on the
delay 7. It is clear that our results are significantly better when 71 = 75. On the other hand,
when 71 # Ty, if the maximum upper bound on the delay 7 is small, then the maximum upper
bound on 7y is larger than that when 71 = 7». It can also be seen that the change in 75 has a
big effect on the upper bound on 74 when 75 is small, but only a small effect when it is large.

Table 2: Calculated allowable size of discrete delay 71 (Example 2).

c 0 [005] 01 ]015] 02 [025] 0.3 |035]| 04

Han’s paper [9] (11 = 72) 1.77 | 1.63 | 1.48 | 1.33 | 1.16 | 0.98 | 0.79 | 0.59 | 0.37
Theorem 2 (11 = 72) 239 |205| 175|149 | 127 | 1.08 | 0.91 | 0.76 | 0.63
Theorem 2 (5 = 10000) 239 |205| 175|149 | 127 | 1.08 | 0.91 | 0.76 | 0.63
Theorem 2 (12 = 0.1) 239 (225]211|196 | 1.81 | 1.66 | 1.50 | 1.33 | 1.16

5 Conclusion

This paper presents some new criteria for the delay-dependent robust stability of neutral systems
with mixed delays and time-varying structured uncertainties. The criteria take into account the



t t

relationships between z(t — 1) and z(t) — / z(s)ds, z(t — 12) and z(t) — / z(s)ds. The
—T t—T

free weighting matrices used to express the rela‘luionships between, and the recipr02(3a1 influences

of, these terms are selected by means of LMIs. The criteria arrived at in this paper are both
neutral- and discrete-delay-dependent. Numerical examples illustrate both the improvement
that this method provides over previous methods, and also the reciprocal influences between
neutral delays and discrete delays.
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