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Abstract

For delay Lur’e control systems with multiple non-linearities and time-varying un-
certainties, necessary and sufficient conditions for the existence of Lyapunov func-
tional in the extended Lur’e form with negative definite derivative to guarantee
robust absolute stability are derived by solving a set of linear matrix inequali-
ties(LMIs). Moreover, some new delay-dependent absolute stability criteria are also
presented, in which some free weighting matrices that express the relationships be-
tween the terms in Leibniz-Newton formula are considered. Finally, an example is
provided to illustrate the effectiveness of the proposed method.
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1 Introduction

The absolute stability problem of Lur’e control systems has widely been stud-
ied and has practical applications(see [15], [13], [8], [20], [7]). Since time-delay
is commonly encountered in various engineering systems and it is frequently
a source of instability and so the stability problem of delay Lur’e control sys-
tems has been of interest to researchers over the past decades (see [16], [1], [6],
[2], [9]). Some necessary and sufficient conditions are given for the existence
of Lyapunov functional in the extended Lur’e form for delay Lur’e control
systems with negative definite derivative to guarantee absolute stability (see
[6]). These results provide only the existence conditions, and are not solvable.
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On the other hand, the necessary and sufficient conditions in [6] can not be
extended to the systems with time-varying structured uncertainties. [9] em-
ployed Linear matrix inequality(LMI) to express the necessary and sufficient
conditions obtained in [6]. The advantage of this work is that the free param-
eters in the Lyapunov functional can be derived by solving a group of LMIs.
By the way, the results in [9] can be easily extended to the systems with
time-varying structured uncertainties, which will be given this paper.

Moreover, the criteria which do not include the information on delay are
called delay-independent criteria. They are more conservative than the delay-
dependent criteria when delays guaranteeing stability are small. It is impor-
tant to discuss the delay-dependent problem of delay Lur’e control systems.
Recently, there are a number of interesting new ideas to improve the results
on delay-dependent stability of linear systems with delay (see [17], [3], [14],
[12], [11], [19], [4], [5]). The most effective methods are presented by [14] and
extended by [12]. In the derivative of Lyapunov functional, they used the

Leibniz-Newton formula and replaced the term x(t− τ) with x(t)−
t∫

t−τ

ẋ(s)ds

in some places, but kept it in other places. For example, in [12], x(t − τ)

in the expression 2xT (t)PA1ẋ(t) is replaced with x(t) −
t∫

t−τ

ẋ(s)ds; but in

τ ẋT (t)Zẋ(t), it is not. In fact, there must exist some optimal weighting ma-
trices between the terms in the Leibniz-Newton formula, but they gave some
fixed weighting matrices. Recently, [10] presented a new method that use the
free weighting matrices to express the relationship between the terms in the
Leibniz-Newton formula. In addition, the optimal weighting matrices can be
solved by the solutions of some LMIs.

This paper discusses the existence problem of a Lyapunov functional in the
extended Lur’e form with negative definite derivative to guarantee robust ab-
solute stability of delay Lur’e control systems with multiple non-linearities in
the bounded sector. Some necessary and sufficient conditions for the existence
problem are presented. They convert the problem to one of solving a set of
LMIs. In addition, the method presented in [10], in which some free weighting
matrices are used to express the relationships between the terms in Leibniz-
Newton formula, is employed to derive the delay-dependent robust absolute
stability criteria. Finally, an example is proposed to illustrate the improvement
of the necessary and sufficient condition over the sufficient condition directly
using S-procedure. The benefit of delay-dependent criteria is also demonstrate
in the example.
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2 Notation and Preliminaries

Consider a time-varying structured uncertain delay Lur’e control systems with
multiple non-linearities

S1 :





ẋ(t) = (A + ∆A(t))x(t) + (B + ∆B(t))x(t− τ)

+(D + ∆D(t))f(σ(t)),

σ(t) = CT x(t),

(1)

where x(t) = (x1(t), x2(t), · · · , xn(t))T is the state vector, τ > 0, A = (aij)n×n,
B = (bij)n×n, D = (dij)n×m = (d1, d2, · · · , dm), C = (cij)n×m = (c1, c2, · · · , cm),
dj and cj(j = 1, 2, · · · ,m) are the j-th column of D and C, respectively, σ(t) =
(σ1(t), σ2(t), · · · , σm(t))T , f(σ(t)) = (f1(σ1(t)), f2(σ2(t)), · · · , fm(σm(t)))T is
the nonlinear function.

The nominal form of system S1 is given by

S0 :





ẋ(t) = Ax(t) + Bx(t− τ) + Df(σ(t)),

σ(t) = CT x(t).
(2)

Here, the non-linearities fj(·) satisfy the following

fj(·) ∈ Kj[0, kj] =
{
fj(σj)|fj(0) = 0, 0 ≤ σjfj(σj) ≤ kjσ

2
j (σj 6= 0)

}
,

j = 1, 2, · · · ,m,
(3)

with 0 < kj < +∞, j = 1, 2, · · · ,m. For simplicity, sometimes we denote
fj(σj) = fj(σj(t)).

Also, the uncertainties are assumed to be of the following form

[∆A(t) ∆B(t) ∆D(t)] = HF (t)[Ea Eb Ed], (4)

where H, Ea, Eb, Ed are the known real constant matrices with appropriate
dimensions, Edj is the j-th column of Ed, F (t) is an unknown real time-varying
matrix with Lebesgue measurable elements satisfying

‖F (t)‖ ≤ 1, ∀ t. (5)
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For the sake of simplicity, let

Ā = A + ∆A(t), B̄ = B + ∆B(t), D̄ = D + ∆D(t). (6)

Construct the Lyapunov functional in the extended Lur’e form as

V (xt) = xT (t)Px(t) +

t∫

t−τ

xT (s)Qx(s) + 2
m∑

j=1

λj

σj∫

0

fj(σj)dσj, (7)

where P = P T > 0, Q = QT > 0 and λj ≥ 0(j = 1, 2, · · · ,m) need to be
determined.

Definition 1 . The functional V (xt) of (7) is said to be a Lyapunov functional
of system S1 (or nominal system S0) with negative definite derivative, that is,

V̇ (xt)|S1 < 0 (orV̇ (xt)|S0 < 0), on K = diag(k1, k2, · · · , km),

if for any fj(·) ∈ Kj[0, kj](j = 1, 2, · · · ,m), (x(t), x(t− τ)) 6= 0.

(8)

If condition (8) holds, system S1(or nominal system S0) is robustly absolutely
stable(or absolutely stable) in the sector bounded by K = diag(k1, k2, · · · , km).

To derive the main results in the next section, the following lemmas are given.

Lemma 2 ([9]): Equation (8) for nominal system S0 holds, which ensure sys-
tem S0 is absolutely stable in the sector bounded by K =diag(k1, k2, · · · , km),
if there exist P = P T > 0,Q = QT > 0, T=diag(t1, t2, · · · , tm) ≥ 0, Λ=diag
(λ1, λ2, · · · , λm) ≥ 0 such that the LMI

Ω =




AT P + PA + Q PB PD + AT CΛ + CKT

BT P −Q BT CΛ

DT P + ΛCT A + TKCT ΛCT B ΛCT D + DT CΛ− 2T




< 0, (9)

holds. It is necessary while m = 1.

Let α =diag(α1, α2, · · · , αm) and

Dm
j = {α|αi = 0, for i ≥ j; αi ∈ {0, ki}, for i < j, (i = 1, 2, · · · ,m)},

j = 1, 2, · · · ,m.
(10)
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with 2j−1 elements. Assume that

A(α) := A + DαCT , P (α) := P + CΛαCT . (11)

Then, we have the following Lemma

Lemma 3 ([9]): It assumes that m ≥ 1 for nominal system S0. The necessary
and sufficient conditions for the existence of Lyapunov functional V (xt) in (7)
satisfying equation (8), which ensure system S0 is absolutely stable in the sector
bounded by K =diag(k1, k2, · · · , km) , are that ∀α ∈ Dm

j (j = 1, 2, · · · ,m), there
exist tα ≥ 0 and P = P T > 0 and Q = QT > 0 and λi ≥ 0(i = 1, 2, · · · ,m),
such that LMIs in the following hold.

Gj(α) =




Φ11 P (α)B Φ13 + tαkjcj

BT P (α) −Q λjB
T cj

ΦT
13 + tαkjc

T
j λjc

T
j B 2λjc

T
j dj − 2tα




< 0, (12)

where

Φ11 = AT (α)P (α) + P (α)A(α) + Q,
Φ13 = P (α)dj + λjA

T (α)cj.

To obtain the conditions for the systems with time-varying structured uncer-
tainties, the following lemma is needed to deal with the uncertainties.

Lemma 4 ([18]): Given matrices Q = QT , H,E and R = RT > 0 of appro-
priate dimensions, then

Q + HFE + ET F T HT < 0,

for all F satisfying F T F ≤ R, if and only if there exists some ε > 0 such that

Q + εHHT + ε−1ET RE < 0.

3 Robustness for Absolute Stability

For a time-varying structured uncertain system S1, the following sufficient
condition is derived from Lemma 2 which uses S-procedure directly for the
non-linearities, in which the uncertainties are dealt with by using Lemma 4.
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Theorem 5 System S1 is robustly absolutely stable in the sector bounded by
K =diag(k1, k2, · · · , km) if there exist P = P T > 0, Q = QT > 0, Λ=diag
(λ1, λ2, · · · , λm) ≥ 0,T=diag(t1, t2, · · · , tm) ≥ 0 and ε ≥ 0 such that the LMI




Ψ11 PB + εET
a Eb Ψ13 PH

BT P + εET
b Ea −Q + εET

b Eb BT CΛ + εET
b Ed 0

ΨT
13 ΛCT B + εET

d Eb Ψ33 ΛCT H

HT P 0 HT CΛ −εI




< 0 (13)

holds, where

Ψ11 = AT P + PA + Q + εET
a Ea,

Ψ13 = PD + AT CΛ + CKT + εET
a Ed,

Ψ33 = ΛCT D + DT CΛ− 2T + εET
d Ed.

Proof: Replacing A,B, D in (9) with A + HF (t)Ea, B + HF (t)Eb and D +
HF (t)Ed, respectively, we find that (9) for S1 is equivalent to the following
condition

Ω +




PH

0

ΛCT H




F (t)
[
Ea Eb Ed

]
+




ET
a

ET
b

ET
d




F T (t)
[
HT P 0 HT CΛ

]
< 0.(14)

By Lemma 4, a necessary and sufficient condition guaranteeing (14) is that
there exists a positive number ε > 0 such that

Ω + ε−1




PH

0

ΛCT H




[
HT P 0 HT CΛ

]
+ ε




ET
a

ET
b

ET
d




[
Ea Eb Ed

]
< 0. (15)

Applying Schur complements shows that (15) is equivalent to (13). 2

The above theorem is conservative to examine robust absolute stability of
system S1 with multiple non-linearities since it is only based on some suffi-
cient conditions. Now, the necessary and sufficient condition for system S1 is
derived, based on the necessary and sufficient condition in Lemma 3.

Theorem 6 The necessary and sufficient conditions for the existence of Lya-
punov functional V (xt) in (7) satisfying equation (8), which ensure system S1
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is robustly absolutely stable in the sector bounded by K =diag(k1, k2, · · · , km)
are that ∀α ∈ Dm

j (j = 1, 2, · · · , m), there exist tα ≥ 0 and P = P T > 0 and
Q = QT > 0 and λi ≥ 0(i = 1, 2, · · · ,m) and εα ≥ 0, such that LMIs in the
following hold.

Ĝj(α) =




Φ̂11 Φ̂12 Φ̂13 P (α)H

Φ̂T
12 Φ̂22 Φ̂23 0

Φ̂T
13 Φ̂T

23 Φ̂33 λjc
T
j H

HT P (α) 0 λjH
T cj −εαI




< 0, (16)

where

Φ̂11 = Φ11 + εαET
a (α)Ea(α),

Φ̂12 = P (α)B + εαET
a (α)Eb,

Φ̂13 = Φ13 + tαkjcj + εαET
a (α)Edj,

Φ̂22 = −Q + εαET
b Eb,

Φ̂23 = λjB
T cj + εαET

b Edj

Φ̂33 = 2λjc
T
j dj − 2tα + εαET

djEdj,
Ea(α) = (Ea + EdαCT )T (Ea + EdαCT ),

and Φ11 and Φ13 are defined in (12).

Proof: Let Ā(α) = Ā + D̄αCT and d̄j is the j-th column of D̄. From Lemma
3, we find the conditions (12) for S1 are equivalent to that there exist P =
P T > 0, Q = QT > 0, λi ≥ 0(i = 1, 2, · · · ,m), ∀j = 1, 2, · · · ,m and ∀α ∈ Dm

j

there exist tα such that the following holds.

Ḡj(α) =




Φ̄11 P (α)B̄ Φ̄13 + tαkjcj

B̄T P (α) −Q λjB̄
T cj

Φ̄T
13 + tαkjc

T
j λjc

T
j B̄ 2λjc

T
j d̄j − 2tα




< 0, (17)

where

Φ̄11 = ĀT (α)P (α) + P (α)Ā(α) + Q,
Φ̄13 = P (α)d̄j + λjĀ

T (α)cj.
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Replacing Ā(α), B̄ and d̄j in (17) with A(α)+HF (t)Ea(α), B +HF (t)Eb and
dj + HF (t)Edj, respectively, Ḡj(α) can be rewritten as

Ḡj(α) = Gj(α) +




P (α)H

0

λjc
T
j H




F (t)
[
Ea(α) Eb Edj

]

+




ET
a (α)

ET
b

ET
dj




F T (t)
[
HT P (α) 0 λjH

T cj

]
.

(18)

where Gj(α) is defined in (12). Then, by Lemma 4 and Schur complements,
Ḡj(α) < 0 if and only if LMI (16) are true. 2

Remark 1: Theorem 6 is based on the necessary and sufficient conditions for
nominal system S0. The improvement over the Theorem 5 which is a sufficient
condition will be shown in the example.

4 Delay Dependent Conditions

The criteria given in the previous section do not include information on delay,
which are referred to as delay-independent criteria. Sometimes, the system S1

or S0 are absolutely stable while τ = 0, but they are not absolutely stable
for all τ > 0, it follows from the continues that the systems are absolutely
stable when τ is very small. So, the criteria that don’t include information on
delay are more conservative than that include information on delay which are
referred to as delay-dependent criteria. Many authors presented some delay-
dependent criteria for the linear system. Followed by the method presented in
[10], the following theorem also attempts to take this relationship between the
terms in Leibniz-Newton formula into account for delay Lur’e control systems.

Specifically, the expression 2
[
xT (t)N1 + xT (t− τ)N2 + fT (σ(t))N3

]

x(t)−

t∫

t−τ

ẋ(s)ds− x(t− τ)


,

which is equal to zero, is added to V̇ (xt), and a new delay-dependent absolute
stability criterion is derived.

Theorem 7 Given a scalar τ > 0, system S0 is absolutely stable if there exist
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P = P T > 0, Q = QT > 0, Z = ZT ≥ 0, X = XT =




X11 X12 X13

XT
12 X22 X23

XT
13 XT

23 X33



≥ 0,

Λ=diag (λ1, λ2, · · · , λm) ≥ 0, T=diag(t1, t2, · · · , tm) ≥ 0 and any matrices
Ni(i = 1, 2, 3) such that the following LMIs (19) and (20) hold.




Γ11 Γ12 Γ13 + CKT τAT Z

ΓT
12 Γ22 Γ23 τBT Z

ΓT
13 + TKCT ΓT

23 Γ33 − 2T τDT Z

τZA τZB τZD −τZ




< 0 (19)

Π =




X11 X12 X13 N1

XT
12 X22 X23 N2

XT
13 XT

23 X33 N3

NT
1 NT

2 NT
3 Z




≥ 0, (20)

where

Γ11 = AT P + PA + Q + N1 + NT
1 + τX11,

Γ12 = PB + NT
2 −N1 + τX12,

Γ13 = PD + AT CΛ + NT
3 + τX13,

Γ22 = −Q−N2 −NT
2 + τX22,

Γ23 = BT CΛ−NT
3 + τX23,

Γ33 = ΛCT D + DT CΛ + τX33.

Proof: Construct Lyapunov functional candidate as

Vd(xt) = V (xt) +

0∫

−τ

t∫

t+θ

ẋT (s)Zẋ(s)dsdθ, (21)

where V (xt) is defined in (7) and Z = ZT ≥ 0 need to be determined.

Using the Leibniz-Newton formula one can write

x(t)− x(t− τ)−
t∫

t−τ

ẋ(s)ds = 0. (22)

Then, for any appropriate dimensional constant matrices Ni(i = 1, 2, 3), the
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following term is equal to zero.

2
[
xT (t)N1 + xT (t− τ)N2 + fT (σ(t))N3

]

x(t)− x(t− τ)−

t∫

t−τ

ẋ(s)ds


 .(23)

On the other hand, for any appropriate dimensional constant matrices X, the
following term is also equal to zero.




x(t)

x(t− τ)

f(σ(t))




T 


τ(X11 −X11) τ(X12 −X12) τ(X13 −X13)

τ(X12 −X12)
T τ(X22 −X22) τ(X23 −X23)

τ(X13 −X13)
T τ(X23 −X23)

T τ(X33 −X33)







x(t)

x(t− τ)

f(σ(t))




.(24)

Calculating the derivative of Vd(xt) along the solutions of system S0 and adding
(23) and (24) into it, one have

V̇d(xt)|S0 = ξT (t)Γξ(t)−
t∫

t−τ

ζT (t, s)Πζ(t, s)ds, (25)

where

ξ(t) = [xT (t) xT (t− τ) fT (σ)]T , ζ(t, s) = [ξT (t) ẋT (s)]T ,

Γ =




Γ11 + τAT ZA Γ12 + τAT ZB Γ13 + τAT ZD

ΓT
12 + τBT ZA Γ22 + τBT ZB Γ23 + τBT ZD

ΓT
13 + τDT ZA ΓT

23 + τDT ZB Γ33 + τDT ZD



,

and Γij(i = 1, 2, 3; i ≤ j ≤ 3) are defined in (19) and Π is defined in (20).

In addition, the conditions (3) are equivalent to that

fj(σj(t))(fj(σj(t))− kjc
T
j x(t)) ≤ 0, j = 1, 2, · · · , m, (26)

and it is easily shown that

{ξ(t)|(x(t), x(t− τ))) 6= 0 and (3)} = {ξ(t)|ξ(t) 6= 0 and (3)}. (27)

It now follows from (26) and (27) and applies the S-procedure, if there exist
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T=diag(t1, t2, · · · , tm) ≥ 0 such that

ξT (t)Γξ(t)−
t∫

t−τ

ζT (t, s)Πζ(t, s)ds

−2
m∑

j=1

tjfj(σj(t))(fj(σj(t))− kjc
T
j x(t)) < 0,

(28)

for ξ(t) 6= 0, V̇d(xt)|S0 < 0 for (x(t), x(t− τ)) 6= 0 and the condition (3). (28)
gives that LMIs (19) and (20) hold. So, system S0 is absolutely stable.

Remark 2: Delay-independent criteria may be conservative especially when
the size of the delay is actually small. The comparison between these two
classes of criteria will be given in the example. It will be shown that the
system is not absolutely stable for any delays, but it is absolutely stable when
the delay is smaller than a constant number.

In the following, Theorem 7 is easy to extended to the system with time-
varying structured uncertainties using Lemma 4.

Theorem 8 Given a scalar τ > 0, system S1 is robustly absolutely stable
if there exist P = P T > 0, Q = QT > 0, Z = ZT ≥ 0, X = XT =


X11 X12 X13

XT
12 X22 X23

XT
13 XT

23 X33



≥ 0, Λ=diag (λ1, λ2, · · · , λm) ≥ 0, T=diag(t1, t2, · · · , tm) ≥ 0,

any matrices Ni(i = 1, 2, 3) and a scalar ε > 0 such that the following LMIs
(29) and (20) hold.




Γ11 + εET
a Ea Γ12 + εET

a Eb Γ̃13 τAT Z PH

ΓT
12 + εET

b Ea Γ22 + εET
b Eb Γ̃23 τBT Z 0

Γ̃T
13 Γ̃T

23 Γ̃33 τDT Z ΛCT H

τZA τZB τZD −τZ τZH

HT P 0 HT CΛ τHT Z −εI




< 0. (29)

where

Γ̃13 = Γ13 + CKT + εET
a Ed,

Γ̃23 = Γ23 + εET
b Ed,

Γ̃33 = Γ33 − 2T + εET
d Ed,

and Γij(i = 1, 2, 3; i ≤ j ≤ 3) are defined in (19).
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5 Example

Consider system S1 with

A =



−1 0

1 −2


 , B =



−0.5 −0.1

0.1 −0.5


 , D =




0 −1

−1 0


 , C = I,

and ∆A(t), ∆B(t) and ∆D(t) are uncertain matrices satisfying

‖∆A(t)‖ ≤ 0.2, ‖∆B(t)‖ ≤ 0.05, ‖∆D(t)‖ ≤ 0.05,

the above system is of the form of (4)-(5) with

H =




1 0

0 1


 , Ea =




0.2 0

0 0.2


 , Eb =




0.05 0

0 0.05


 , Ed =




0.05 0

0 0.05


 ,

assume that k1 = 1, k2 = 2.23. Since m = 2, we have

D2
1 = {diag(0, 0)}, D2

2 = {diag(0, 0), diag(k1, 0)}.

By solving LMIs (19), we obtain that

P =




16.4678 −9.3711

−9.3711 29.0463


 , Q =




9.2568 −6.1537

−6.1537 27.4173


 ,

λ1 = 0.3889, λ2 = 28.5416.

Thus, system S1 is robustly absolutely stable.

Moreover, LMI (13) is not true while k1 = 1, k2 = 2.09 in Theorem 5 if the S-
procedure is directly adopted to examine the robust absolute stability, which
indicates that it is conservative that S-procedure is directly adopted for the
uncertain systems with multiple non-linearities.

In addition, we set k1 = 1, k2 = 3, then LMIs (16) are not true such that the
Lyapunov functional in the extended Lur’e form to guarantee robust absolute
stability of system S1 can’t be found, but it follows from Theorem 8 that
system S1 is robustly absolutely stable while τ ≤ 1.5789.
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6 Conclusion

This paper presents the necessary and sufficient conditions for the existence
of a Lyapunov functional in the extended Lur’e form with negative definite
derivative to guarantee the robust absolute stability for delay Lur’e control
systems with multiple non-linearities and converts the existence problem to a
simple of solving a set of LMIs. Moreover, some delay-dependent criteria are
derived for the absolute stability or robust absolute stability.
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