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Improved Bounded-Real-Lemma Representation and
H∞ Control of Systems with Polytopic
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Abstract— This paper concerns the problem of the bounded-
real-lemma representation and H∞ control of linear systems
with real convex polytopic uncertainties. In order to use a
parameter-dependent Lyapunov function for a system with poly-
topic uncertainties, the derivative term for the state, which is in
the derivative of the Lyapunov function, is reserved; and free
weighting matrices are used to express the relationship between
the terms of the system equation. This yields a new LMI approach
to bounded-real-lemma representation. In addition, this method
is extended to the design of a state-feedback controller that solves
the H∞ control problem. Numerical examples demonstrate that
the proposed method is effective and is an improvement over
previous ones.

Index Terms-bounded-real-lemma,H∞ control, parameter-
dependent Lyapunov function, polytopic uncertainty, linear
matrix inequality.

I. I NTRODUCTION

The construction of a Lyapunov function is a basic problem
in system analysis and synthesis. Over the past few years, a
considerable number of studies have been devoted to systems
with polytopic uncertainties. Many of them are based on the
concept of quadratic stability, which attempts to find a single
quadratic Lyapunov function (e.g., [1], [2]). Recent inves-
tigations have shown that a parameter-dependent Lyapunov
function can overcome the conservativeness arising from the
use of a single quadratic Lyapunov function for continuous
linear uncertain systems [3]–[8], time-delay uncertain systems
[9]–[12], and discrete uncertain systems [13]–[15]. P.J. de
Oliveira et al. (2002) made a numerical comparison and
assessed the conservativeness of quadratic stability conditions
[7]. Of note is the fact that Shaked (2001) derived stability
criteria and a bounded-real-lemma (BRL) representation for
linear systems with real convex polytopic uncertainties [6];
and Jia (2003) [8] found alternative proofs to the theorems
in [6]. In addition, their method was extended to the problem
of H∞ control. However, their BRL representation was not
expressed solely in terms of a linear matrix inequality (LMI)
[16].

This paper presents a simple technique for the BRL repre-
sentation of a linear system. In the derivative of the Lyapunov
function for a system with constant coefficient matrices, the
term ẋ(t) is reserved, and the relationship between the terms
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of the system equation is expressed by free weighting matrices.
So, the Lyapunov matrices (the matrices in the Lyapunov
function) do not contain any product terms involving the
dynamic matrices (the matrices in the dynamic equation of
the system). These features enable a parameter-dependent
Lyapunov function to be used for a system with polytopic
uncertainties. Moreover, this idea is extended to solve the
problem ofH∞ state-feedback control. Numerical examples
demonstrate that the method presented in this paper is a
significant improvement over previous ones.

II. M AIN RESULTS

Consider the linear system

Σ :





ẋ(t) = Ax(t) + Bωω(t) + Bu(t),
z(t) = Cx(t) + Dωω(t) + Du(t),
x(0) = 0,

(1)

wherex(t) ∈ Rn is the state vector,u(t) ∈ Rm is the control
input, ω(t) ∈ Lq

2[0,∞) is an exogenous disturbance, and
z(t) ∈ Rp is the controlled error. The matricesA, Bω, B, C,
Dω, andD are constant matrices of appropriate dimensions.
For a given scalarγ > 0, the performance of the system is
defined to be

J(ω) =
∫ ∞

0

(zT z − γ2ωT ω)ds. (2)

The problem is to find a state-feedback gain,K ∈ Rm×n,
in the control law

u(t) = Kx(t) (3)

such thatJ(ω) < 0 for all non-zeroω(t) ∈ Lq
2[0,∞).

First, we give a new form of BRL representation foru(t) =
0. Next, we extend it to a system with polytopic uncertainties.
Then, we use it to solve the problem of designing anH∞
state-feedback controller.

Theorem 1:Consider the systemΣ with u(t) = 0. For a
given scalarγ > 0, J(ω) < 0 holds for all nonzeroω(t) ∈
Lq

2[0,∞) if there exist a symmetric positive definite matrix
P = PT > 0 and any appropriately dimensioned matrices
Tj (j = 1, 2) such that the following LMI holds:

Ξ =




−AT TT
1 − T1A −T1Bω Ξ13 CT

−BT
ω TT

1 −γ2I −BT
ω TT

2 DT
ω

ΞT
13 −T2Bω T2 + TT

2 0
C Dω 0 −I


 < 0,

(4)
whereΞ13 = P + T1 −AT TT

2 .
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Proof: Choose a Lyapunov function candidate to be

V (x) := xT (t)Px(t), (5)

whereP = PT > 0 needs to be determined. According to (1),
for any appropriately dimensioned matricesTj (j = 1, 2), we
have

2
[
xT (t)T1 + ẋT (t)T2

]
[ẋ(t)−Ax(t)−Bωω(t)] = 0. (6)

Calculating the derivative ofV (x) along the solutions ofΣ
and adding Equation (6) to it yields

V̇ (x) + zT z − γ2ωT ω
= 2xT (t)Pẋ(t)

+[Cx(t) + Dωω(t)]T [Cx(t) + Dωω(t)]
−γ2ωT (t)ω(t)
+2

[
xT (t)T1 + ẋT (t)T2

]
[ẋ(t)−Ax(t)−Bωω(t)]

:= ζT (t)Φζ(t),
(7)

where

ζ(t) := [xT (t) ωT (t) ẋT (t)]T ,

Φ =



−AT TT

1 − T1A + CT C −T1Bω + CT Dω

−BT
ω TT

1 + DT
ω C −γ2I + DT

ω Dω

P + TT
1 − T2A −T2Bω

P + T1 −AT TT
2

−BT
ω TT

2

T2 + TT
2


 .

Clearly, if Φ < 0, then V̇ (x) + zT z − γ2ωT ω < 0 for any
ζ(t) 6= 0. The initial conditionx(0) = 0 implies thatJ(ω) < 0
[16]. Applying the Schur complement [16] shows thatΦ < 0
is equivalent toΞ < 0. So,J(ω) < 0 for all nonzeroω(t) ∈
Lq

2[0,∞) if LMI (4) holds.
Remark 1:A well-known condition forJ(ω) < 0 for all

nonzeroω(t) ∈ Lq
2[0,∞) [16] is that there exists a symmetric

positive definite matrixP = PT > 0 such that



PA + AT P PBω CT

BT
ω P −γ2I DT

ω

C Dω −I


 < 0. (8)

This condition is equivalent to the one in Theorem 1. In fact,
left-multiplying the third row ofΞ in (4) by AT or BT

ω and
adding it to the first or second row, and right-multiplying the
third column ofΞ by A or Bω and adding it to the first or
second column yields the following LMI:



PA + AT P PBω P + T1 −AT TT
2 CT

BT
ω P −γ2I −BT

ω TT
2 DT

ω

P + TT
1 − T2A −T2Bω T2 + TT

2 0
C Dω 0 −I


 < 0.

(9)
It is clear that LMI (8) is feasible if LMI (9) is feasible. On the
other hand, a feasible solution,P , of LMI (8) is also a feasible
solution of LMI (9). For example, by settingT1 = −P , LMI
(9) is transformed into




PA + AT P PBω −AT TT
2 CT

BT
ω P −γ2I −BT

ω TT
2 DT

ω

−T2A −T2Bω T2 + TT
2 0

C Dω 0 −I


 < 0. (10)

If T2 is chosen to be−δI, where δ is a sufficiently small
positive scalar, thenP is a solution of LMI (10) if it is a
feasible solution of LMI (8).

The importance of Theorem 1 is that it separatesP from
A, Bω, C, andDω; that is, there are no terms containing the
product of P and any of them. This enables a new robust
BRL to be derived for a system with polytopic uncertainties
by using a parameter-dependent Lyapunov function.

Assuming that the matricesA, Bω, C, and Dω of Σ are
known to lie within the polytopic uncertainties,Ω, we have

[A Bω C Dω] ∈ Ω := {[A(ξ) Bω(ξ) C(ξ) Dω(ξ)]

=
p∑

i=1

ξi [Ai Bω,i Ci Dω,i] ,
p∑

i=1

ξi = 1, ξi ≥ 0

}
,

(11)

where Ai, Bω,i, Ci, and Dω,i (i = 1, · · · , p) are constant
matrices with appropriate dimensions; andξi (i = 1, · · · , p)
are time-invariant uncertainties. Theorem 1 is extended to a
system with polytopic uncertainties by employing a parameter-
dependent Lyapunov function as follows:

Theorem 2:Consider the systemΣ with u(t) = 0 and poly-
topic uncertainties (11). For a given scalarγ > 0, J(ω) < 0
holds for all nonzeroω(t) ∈ Lq

2[0,∞) if there exist symmetric
positive definite matricesPi = PT

i > 0 (i = 1, · · · , p) and any
appropriately dimensioned matricesTj (j = 1, 2) such that the
following LMIs hold for i = 1, · · · , p:

Ψi =




Ψ(i)
11 −T1Bω,i Ψ(i)

13 CT
i

−BT
ω,iT

T
1 −γ2I −BT

ω,iT
T
2 DT

ω,i

(Ψ(i)
13 )

T −T2Bω,i T2 + TT
2 0

Ci Dω,i 0 −I


 < 0,

(12)
where

Ψ(i)
11 = −AT

i TT
1 − T1Ai,

Ψ(i)
13 = Pi + T1 −AT

i TT
2 .

Proof: Choose a parameter-dependent Lyapunov function
candidate to be

Vp(x) :=
p∑

i=1

xT (t)ξiPix(t) := xT (t)P (ξ)x(t), (13)

wherePi = PT
i > 0 (i = 1, · · · , p) need to be determined.

Equation (6), in whichTj (j = 1, 2) are any appropriately
dimensioned matrices, is employed in the following calcula-
tion:

V̇p(x) + zT z − γ2ωT ω

= 2xT (t)P (ξ)ẋ(t)
+[C(ξ)x(t) + Dω(ξ)ω(t)]T [C(ξ)x(t) + Dω(ξ)ω(t)]
−γ2ωT (t)ω(t)
+2

[
xT (t)T1 + ẋT (t)T2

]
[ẋ(t)−A(ξ)x(t)−Bω(ξ)ω(t)]

:= ζT (t)Ψ(ξ)ζ(t),
(14)

whereζ(t) is defined in (7), andΨ(ξ) has the same structure
asΦ in (7) but with A, Bω, C, andDω replaced withA(ξ),
Bω(ξ), C(ξ), and Dω(ξ), respectively. IfΨ(ξ) < 0, then
V̇p(x) + zT z − γ2ωT ω < 0 for any ζ(t) 6= 0. And the
initial condition x(0) = 0 implies thatJ(ω) < 0 [16]. On
the other hand, applying the Schur complement shows that
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Ψi < 0 (i = 1, · · · , p) ensures thatΨ(ξ) < 0. So, J(ω) < 0
for all nonzeroω ∈ Lq

2[0,∞) holds if LMIs (12) hold.
Remark 2:A parameter-dependent Lyapunov function is

employed in Theorem 2. This theorem is an extension of
Theorem 1, which is equivalent to the well-known condition
(8). Lemmas 2.1 and 2.2 in [6] extend the condition (8) to yield
a BRL representation of a system with polytopic uncertainties.
This overcomes the conservativeness of quadratic stability
conditions, but these Lemmas are only sufficient conditions
for (8). In particular, the LMI conditions in [6] contain a
scalar tuning parameter,ε, the choice of which may lead to
conservativeness. In contrast, Theorem 2 is based on LMIs
(12), which do not contain any tuning parameters.

Theorem 2 can be used to design anH∞ state-feedback
controller for a system with polytopic uncertainties as follows:

Theorem 3:Consider the systemΣ with polytopic uncer-
tainties (11). For given scalarsλ andγ > 0, the state-feedback
control law (3) guarantees thatJ(ω) < 0 for all nonzero
ω(t) ∈ Lq

2[0,∞) if there exist symmetric positive definite
matricesXi = XT

i > 0 (i = 1, · · · , p) and any appropriately
dimensioned matricesS andV such that the following LMIs
hold for i = 1, · · · , p:

Γi =




Γ(i)
11 −Bω,i Γ(i)

13 Γ(i)
14

−BT
ω,i −γ2I −λBT

ω,i DT
ω,i

(Γ(i)
13 )

T −λBω,i λ(S + ST ) 0

(Γ(i)
14 )

T
Dω,i 0 −I




< 0, (15)

where
Γ(i)

11 = −SAT
i −AiS

T −BV − V T BT ,
Γ(i)

13 = Xi + ST − λSAT
i − λV T BT ,

Γ(i)
14 = SCT

i + V T DT .
Moreover, the control law isu(t) = V S−T x(t).

Proof: In (3), we replaceA(ξ) and C(ξ) in Ψ(ξ) in
(14) with A(ξ) + BK andC(ξ) + DK, respectively, and set
T1 = T and T2 = λT . Based on the fact thatT2 + TT

2 in
Ψ(ξ) is negative definite, clearlyT is nonsingular. Then, if we
premultiply diag(T−1, I, T−1) by Ψ(ξ) in (14), postmultiply
diag(T−T , I, T−T ) by Ψ(ξ), let S = T−1, Xi = SPiS

T (i =
1, · · · , p) andK = V S−T , and apply the Schur complement,
then we obtain (15).

Remark 3:Theorem 3 contains a tuning parameter,λ; and
the optimum value can be ascertained by the approach in
Remark 5 of [10]. Furthermore, a numerical optimization
algorithm, such asfminsearch in the Optimization Toolbox
Ver. 2.2 of Matlab 6.5, can provide a numerical solution to this
problem.

III. E XAMPLES

In this section, the two examples discussed in [6] are
employed to demonstrate the effectiveness of the method
presented in this paper and the improvement over previous
ones.

Example 1: [6] Consider the uncertain systemΣ with

A =
[

0 1
−1 + g −1− g

]
, Bω =

[
0
1

]
,

C =
[

1 −2
]
, Dω = [0],

whereg is an uncertain parameter that is known to lie in the
interval [−g1, g1]. A can be rewritten as

A = ξ

[
0 1

−1 + g1 −1− g1

]

+(1− ξ)
[

0 1
−1− g1 −1 + g1

]
.

For g1 = 0.3777, the methods in [6], [16] yield values of
5 and 4.488, respectively, for the performance,γ. In contrast,
Theorem 2 yields a minimumγ of 3.4963, which is clearly
much better.

Example 2: [2], [6] Consider the satellite system in [2],
which has the following state-space representation [6]:



1 0 0 0
0 1 0 0
0 0 J1 0
0 0 0 J2







θ̇1

θ̇2

θ̈1

θ̈2


 =




0 0 1 0
0 0 0 1
−k k −f f
k −k f −f







θ1

θ2

θ̇1

θ̇2


 +




0
0
0
1


 ω +




0
0
1
0


 T .

(16)
The controlled error,z, is given by

z =
[

θ2

0.01T
]

; (17)

and T is the control input. The parameters of the system
are assumed to beJ1 = J2 = 1, k ∈ [0.09 0.4], and
f ∈ [0.0038 0.04]. Theorem 3 withλ = 0.12 yields a value
of 1.117 for the level of attenuation,γ, of the following
controller:

K = −[219.8 2356.5 61.3 3058.0].

However, the minimumγ is as large as 1.557 in [16], which
uses the quadratic stabilization method, and 1.478 in [6].

IV. CONCLUSION

This paper describes a new technique for BRL repre-
sentation and its application to theH∞ control of linear
systems with polytopic uncertainties. First, a simple criterion
is presented for a system with constant coefficient matrices.
It employs free weighting matrices to take the relationship
between the terms of the system equation into account. With
this treatment, no terms appear that involve the product of the
Lyapunov matrices and the dynamic matrices, which makes
it easy to extend the treatment to a system with polytopic
uncertainties. This method is further extended to the design
of an H∞ state-feedback controller. Numerical examples
demonstrate that the methods described in this paper are very
effective and are a significant improvement over previous ones.
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