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Abstract—This paper concerns the problem of the bounded- of the system equation is expressed by free weighting matrices.
real-lemma representation and H.. control of linear systems So, the Lyapunov matrices (the matrices in the Lyapunov
with real convex polytopic uncertainties. In order t0 use a g nction) do not contain any product terms involving the
parameter-dependent Lyapunov function for a system with poly- d . tri th tri in the d . i f
topic uncertainties, the derivative term for the state, which is in ynamic matrices (the matrices in the dynamic equation o
the derivative of the Lyapunov function, is reserved; and free the system). These features enable a parameter-dependent
weighting matrices are used to express the relationship between Lyapunov function to be used for a system with polytopic
the terms of the system equation. This yields a new LMI approach yncertainties. Moreover, this idea is extended to solve the
to bounded-real-lemma representation. In addition, this method problem of H., state-feedback control. Numerical examples

is extended to the design ofastate-feedbackcontrollerthatsolvesd trate that th thod ted in thi .
the H., control problem. Numerical examples demonstrate that emonsftrate tha € method presented In this paper IS a

the proposed method is effective and is an improvement over Significant improvement over previous ones.
previous ones.

Index Terms-bounded-real-lemmal,, control, parameter- Il. MAIN RESULTS

dependent Lyapunov function, polytopic uncertainty, linear Consider the linear system

matrix inequality. i(t) = Az(t) + Bow(t) + Bu(t),
Y ¢ z(t) = Ca(t) + Dow(t) + Du(t), (@)
I. INTRODUCTION z(0) =0,

The construction of a Lyapunov function is a basic problemherex(t) € R™ is the state vecton(t) € R™ is the control
in system analysis and synthesis. Over the past few yearspgut, w(t) € £3[0,00) is an exogenous disturbance, and
considerable number of studies have been devoted to systems e R? is the controlled error. The matrices B, B, C,
with polytopic uncertainties. Many of them are based on th®,,, and D are constant matrices of appropriate dimensions.
concept of quadratic stability, which attempts to find a singleor a given scalary > 0, the performance of the system is
qguadratic Lyapunov function (e.g., [1], [2]). Recent invesdefined to be
tigations have shown that a parameter-dependent Lyapunov oo
function can overcome the conservativeness arising from the J(w) :/ (=7
use of a single quadratic Lyapunov function for continuous 0
linear uncertain systems [3]-[8], time-delay uncertain systemsThe problem is to find a state-feedback ga,c R™*",
[9]-[12], and discrete uncertain systems [13]-[15]. P.J. de the control law
Oliveira et al. (2002) made a numerical comparison and u(t) = Kx(t) )
assessed the_ conservativeness of quadratic stapility cond_it.igﬂéh that/(w) < 0 for all non-zerow(t) € £3[0, oc).
[7]. Qf note is the fact that Shaked (2001) derived stgblhty First, we give a new form of BRL representation fit) —
grlterla and a bognded-real-lemma (BRL.) represeptqtlon i _.rNext, we extend it to a system with polytopic uncertainties.
linear systems with real convex polytopic uncertainties [6.

and Jia (2003) [8] found alternative proofs to the theorerr&r;;’fggbuascek Iéotstrzﬁg/re the problem of designing g,

in [6]. In addition, their metho.d was extended to.the problem Theorem 1:Consider the systert with u(f) = 0. For a
of H,, control. However, their BRL representation was noi

) : 7 : iven scalary > 0, J(w) < 0 holds for all nonzerav(t) €
expressed solely in terms of a linear matrix inequality (LMI 10, 00) if there exist a symmetric positive definite matrix
[16]. '

P = PT > 0 and any appropriately dimensioned matrices

This paper presents a simple technique for the BRL reprg- (j = 1,2) such that the following LMI holds:

sentation of a linear system. In the derivative of the Lyapunov

z —y*wlw)ds. (2)

function for a system with constant coefficient matrices, the -ATTI - TMA -T1B, Z13 cT
term i(t) is reserved, and the relationship between the terms. -BITI -1 -BIT] DT
== =T T <0,
:13 _TQBW T2 + T2 0
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Proof: Choose a Lyapunov function candidate to be If 73 is chosen to be-d§I, whered is a sufficiently small
T positive scalar, ther? is a solution of LMI (10) if it is a
V(z) =" (t)Px(t), ()  feasible solution of LMI (8).
whereP = PT > 0 needs to be determined. According to (1) The importance of Theorem 1 is that it separafe$rom

A, B,,, C, andD,; that is, there are no terms containing the
for any appropriately dimensioned matri =1,2 w ws
have Y approp y B =1.2)w product of P and any of them. This enables a new robust

BRL to be derived for a system with polytopic uncertainties
) [mT(t)Tl + iT(t)TQ] [#(t) — Az(t) — B,w(t)] = 0. (6) by using a parameter-dependent Lyapunov function.
Assuming that the matriced, B, C, and D, of ¥ are
Calculating the derivative o¥/(x) along the solutions oE  known to lie within the polytopic uncertaintie§, we have

and adding Equation (6) to it yields
[A B, C D] € Q:={[A(£) Bu(§) C(§) Du(&)]

V(:L“) + 272 — y2wlw P P 11)
= 22T(t)Pi(t) = Zfi [Ai Byi Ci Dyl 72& =1,& > 0},
[C:L(t) + Dow(®)|T[Cz(t) + D,yw(t)) i=1 i=1
—7 wT (t)w(t) where A;, B,;, C;, and D, ; (i = 1,---,p) are constant
+2 [z" ()T + 2" (1) T3] [#(t) — Ax(t) — Bow(t)] matrices with appropriate dimensions; agid(i = 1,---,p)
= (T(H)eC(1), are time-invariant uncertainties. Theorem 1 is extended to a
@) system with polytopic uncertainties by employing a parameter-
where dependent Lyapunov function as follows:
C(t) = [aT(t) w'(t) $T(t)71T7 Theorem 2:Consider the systei with «(t) = 0 and poly-
~ATT ~T\A+CTC -TB,+C"D, topic uncertainties (11). For a given scatar> 0, J(w) < 0
= —-BIT{ + DLC —y*I + DD, holds for all nonzeras(t) € £4[0, oo) if there exist symmetric
P+Tf —TA —12B., positive definite matrice® = PT >0 (i =1,---,p) and any
P+T - ATTY appropriately dimensioned matric&s (j = 1,2) such that the
-BITy following LMIs hold fori =1, -, p:
Lo+ Ty (i) (i)
Clearly, if ® < 0, thenV(z) + "z — y%w"w < 0 for any —I;PTHTT —31125’}” —JE;IJTISTT gg
¢(t) # 0. The initial conditionz(0) = 0 implies that/(w) < 0 U, = wsi" L v wyit2 wi | <0,
[16]. Applying the Schur complement [16] shows that< 0 (\I/(lg)) ~T2B,; Te+TF 0
is equivalent to= < 0. So, J(w) < 0 for all nonzerow(t) € C; D, 0 —I
L£2[0, 00) if LMI (4) holds. (] (12)
Remark 1:A well-known condition for.J(w) < 0 for all Wwhere
nonzerow(t) € L£1[0,00) [16] is that there exists a symmetric ol = ~ATTE — T A,
positive definite matrix? = P” > 0 such that vl =P+ 1 — ATTY.
PA+ATP PB, CT Eroof: Choose a parameter-dependent Lyapunov function
BTP 21 DT | <o. ®) candidate to be
C D, —1

Zw ()& Pix(t) == 2T (1) P(€)x(t),  (13)

This condition is equivalent to the one in Theorem 1. In fact,
left-multiplying the third row of= in (4) by AT or BL and
adding it to the first or second row, and right-multiplying th
third column of= by A or B, and adding it to the first or
second column yields the following LMI:

gvhereP PI'>0(i=1,---,p) need to be determined.
Equation (6) in wh|chT (] = 1,2) are any appropriately
dimensioned matrices, is employed in the following calcula-

tion:
T _ ATT T
R T e
petfomA _1p I e, o <0 = 20T ()P
v L. "0 +C(s zc()t)( ) Doy ()] [C(€)x(t) + Du()w(t)]
) t)w(t

Itis clear that LMI (8) is feasible if LMI (9) is feasible. On the +T [“"T(”Tl FET O] [1(1) — AQ)2(t) - Ba(§)w(?)
other hand, a feasible solutioR, of LMI (8) is also a feasible ‘— (OWE)C(E),

(14)
where((t) is defined in (7), andl(¢) has the same structure
as® in (7) but with A, B, C, and D, replaced withA(¢),

solution of LMI (9). For example, by setting; = — P, LMI
(9) is transformed into

PA+ATP  PB, -ATTE CT B, (), C(£), and D, (€), respectively. If¥(¢) < 0, then
BTP —~21  -BIT¢ DT 0. (10 Vo(z) + 272 — y?wTw < 0 for any ((t) # 0. And the
T A ~T2B, To+T{ 0 <O initial condition z(0) = 0 implies thatJ(w) < 0 [16]. On

C D, 0 —I the other hand, applying the Schur complement shows that
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P, <0 (i=1,---,p) ensures tha({) < 0. So, J(w) < 0 whereg is an uncertain parameter that is known to lie in the
for all nonzerow € Eq[o, oo) holds if LMIs (12) hold.  m interval [—g1, g1]. A can be rewritten as
Remark 2: A parameter-dependent Lyapunov function is 0 1
employed in Theorem 2. This theorem is an extension of A = 5[ 14 1 ]
Theorem 1, which is equivalent to the well-known condition g1 4
(8). Lemmas 2.1 and 2.2 in [6] extend the condition (8) to yield +(1—¢) [ 0 ! ] )
a BRL representation of a system with polytopic uncertainties. -9 —l+q

This overcomes the conservativeness of quadratic stabilityFor g; = 0.3777, the methods in [6], [16] yield values of

conditions, but these Lemmas are only sufficient conditiosand 4.488, respectively, for the performangeln contrast,

for (8). In particular, the LMI conditions in [6] contain aTheorem 2 yields a minimuny of 3.4963, which is clearly

scalar tuning parametet, the choice of which may lead to much better.

conservativeness. In contrast, Theorem 2 is based on LMIsExample 2: [2], [6] Consider the satellite system in [2],

(12), which do not contain any tuning parameters. which has the following state-space representation [6]:
Theorem 2 can be used to design Hp, state-feedback _

controller for a system with polytopic uncertainties as follows: 10 0 0 01
Theorem 3:Consider the systert with polytopic uncer- 0 1.0 0 ‘.9.2 =
tainties (11). For given scaladsand~ > 0, the state-feedback 00 Ji 0 Q_l
control law (3) guarantees thaf(w) < 0 for all nonzero L 00 0 J )
w(t) € L0,00) if there exist symmetric positive definite 6o o0 1 0 01 0 0
matricesX; = X! > 0 (i = 1,---,p) and any appropriately 0o 0 0 1 02 I I I U
dimensioned matrice§ and V' such that the following LMIs | =k k& —f f 01 0 I
hold fori =1,---,p: | kK -k F —f 05 1 0
11 w,i 13 14 The controlled errorz, is given by
_sz 72-[ _)‘Bgz Z;,z 0
L) B Asesn) o | T80 2= | ooir | an
(F&)) Doi 0 -1 and 7 is the control input. The parameters of the system
where are assumed to bg; = J, = 1, k € [0.09 0.4], and
' — —SAT — A, 8T — BV —VTRBT, f € [0.0038 0.04]. Theorem 3 withA = 0.12 yields a value
2]) —X; +ST ASAT — \VTRBT, of 1.117 for the level of attenuationy, of the following
ij — SCT + VTDT, controller:
Moreover, the control law is(t) = V.S~ Tx(t). K = —[219.8 2356.5 61.3 3058.0].

Proof: In (3), we replaceA(¢) and C(§) in ¥(&) in
(14) with A(¢) + BK andC(¢) + DK, respectively, and set
T, = T and T, = AT. Based on the fact thaf, + 77 in
U(¢) is negative definite, clearly is nonsingular. Then, if we
premultiply diad7—!, 1,7~ by ¥(¢) in (14), postmultiply

However, the minimumy is as large as 1.557 in [16], which
uses the quadratic stabilization method, and 1.478 in [6].

IV. CONCLUSION

diag -7, 1,7-T) by U(¢), let S = T, X; = SP,ST(i = This paper describes a new technique for BRL repre-
1,---,p) and K = V.S~7, and apply the Schur complementsentation and its application to th&., control of linear
then we obtain (15). m Systems with polytopic uncertainties. First, a simple criterion

Remark 3: Theorem 3 contains a tuning parameterand IS presented for a system with constant coefficient matrices.
the optimum value can be ascertained by the approachliremploys free weighting matrices to take the relationship
Remark 5 of [10]. Furthermore, a numerical optimizatiohetween the terms of the system equation into account. With
algorithm, such afminsearch  in the Optimization Toolbox this treatment, no terms appear that involve the product of the

Ver. 2.2 of Matlab 6.5, can provide a numerical solution to thisyapunov matrices and the dynamic matrices, which makes
problem. it easy to extend the treatment to a system with polytopic

uncertainties. This method is further extended to the design
I1l. EXAMPLES of an H,, state-feedback controller. Numerical examples
.deemonstrate that the methods described in this paper are very

In this section, the two examples discussed in [6] a
%faectlve and are a significant improvement over previous ones.

employed to demonstrate the effectiveness of the meth
presented in this paper and the improvement over previous
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