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Abstract—In this paper, free-weighting matrices are employed attention recently [13], [24] because delay-dependent criteria
to express the relationship between the_terms in the Leibniz- make use of information on the length of delays, and are
Newton formula; and based on that relationship, a new delay- |agg conservative than delay-independent ones. However, some

dependent exponential-stability criterion is derived for delayed . . . .
neural networks with a time-varying delay. Two numerical negative terms in the derivative of the Lyapunov functional

examples demonstrate the improvement this method provides t€nd to be ignored when delay-dependent stability criteria are
over existing ones. derived [13], [24]. This may lead to considerable conserva-

Index Terms— neural networks, delay-dependent criterion, ex- UVENesSs. It is also worth mentioning that, in those papers,
ponential stability, linear matrix inequality (LMI), free-weighting ~ the restriction that the derivative of a time-varying delay be
matrix approach. less than 1 is imposed on stability criteria for neural networks

with a time-varying delay. Recently, a free-weighting-matrix
|. INTRODUCTION approach was proposed [33]-[36] in which free weighting
Héatrices are employed to express the relationship between the
ms of the Leibniz-Newton formula; and all the negative
rms in the derivative of the Lyapunov functional are retained.
is approach avoids the restriction on the derivative of a time-

Neural networks have been extensively studied over t
past few decades and have found application in a vari
of areas, such as pattern recognition, associative memd
and combinatorial optimization. These applications strongly ">
depend on the dynamic behavior of the network. In rece @rying delay.

years, considerable effort has been devoted to analyzing tt?én tjhis p()jap.er, theLl;\r/ltTet;wei?jh(tjin?—mdatrix e:jpproach Is em-l
stability of neural networks without a time delay. ployed to derive an -based delay-dependent exponential-

In reality, however, the dynamics of a neural networ tability criterion for neural networks with a time-varying
often involves time delays due, for example, to the finit elay. Unlike existing ones, this criterion allows the derivative

switching speed of amplifiers in electronic neural networkg,]c a Flme-varym_g delay t? tf_ike any value. And since the
o to the finite signal propagation time in biological networkd!€92tVe terms in the derivative of the Lyapunov functional
Recently, the stability of delayed neural networks has receivBtf retained, .th|s criterion is less conservative tha_n existing
considerable attention (see e.g. [1]-[26]). The criteria derivEd €S- Numerical examples demonstrate the effectiveness of
in these papers are based on various types of stability, sﬁ@ﬁ‘ method.
as asymptotic stability, complete stability, absolute stability,

and exponential stability. As pointed out in [13], the property IIl. SYSTEM DESCRIPTION

of exponential stability is particularly important when the Consider the following delayed neural network:
exponential convergence rate is _used to dete_rm_ine the speeck(t) = —Ca(t) + Ag(x(t)) + Bg(a(t — 7(1) +u, (1)

of neural computations. Thus, in general, it is not only

theoretically interesting but also of practical importance tohere z(:) = [z1(-), 22(-), ---,z,(-)]T € R" is the
determine the exponential stability of, and to estimate ttguron state vectory(z(-)) = [gi(x1(-)), g2(22(:)), -+,
exponential convergence rate of, dynamic neural networks. Ac-(z.(-))]" € R™ denotes the neuron activation function;
cordingly, a great number of sufficient conditions guaranteeing= [u1, u2, ---, un]’ € R™ is a constant input vector;
the global exponential stability of delayed neural networks = diag{ci, cz, -+, c,} is a diagonal matrix withe; > 0;
with constant and time-varying delays have been derived [EndA and B are the connection weight matrix and the delayed
[4], [13], [19], [20], [24], [27]-[32]. Among them, delay- connection weight matrix, respectively, The time delaft,),
dependent exponential-stability criteria have attracted muisha time-varying differentiable function that satisfies
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whereL;, j=1,2,---,n are positive constants. where
In the following, the equilibrium point™* = [z}, x5, - -, Q11 P12 P13 Pua Py
x:]T of (1) is first shifted to the origin by the transformation ST, ®gy Doz Doy Dos
z(+) = z(-) — «*, which converts the system to the following o= | oL, o1, @33 B3y P35 |,
form: <I>§4 <I>§4 c1>§4 Dy 0
, L. L @ 0 sy
Z(t) = —CZ(t) + Af(Z(t)) + Bf(z(t — T(t))), (5) by = ng + T?SC'_‘_ é?TTlT + N+ NIT + er?Q7
wherez(-) = [z1(-), z2(-), ---, zn(-)]” is the state vector of ®1p =P+ T+ CTT] + NI,
the transformed systeny(z(-)) = [f1(z1()), fa(22(*)), -+, P13 = N — Ny, .
Faloa(DIT: and £5(z5()) = 3(25() + =) — (2 )= @1 = 2kD ~TiA+ LR+ N],
1,2,---,n. Note that the functionsf;(-) (] = 1,2,---,n) ¢15 =-T1B+ Ny,
satisfy the following condition: Doy =To+ T4 +7Z,
f (2) Doz = —No,
s <L f](0)207 VZj#O,jzl,Q,"',n, P2y =D —TrA,
% (6) <I)25 =-17B, "
which is equivalent to 233 = _(1T_ #Q = N3 — Ny,
34 = —4Vyq ,
fj(zj) [f](zj) - szj] < Oa f](o) = 07 j = 1727 s, N (1)35 = LSL_ Nf;Ta
7 ®yq = FTW — 2R,
The definition of exponential stability is now given. Os5 = —(1 — )W — 25,
Definition 1: The system (5) is said to be exponentially L =diag(Ly, Lo, -+, Ly).
stable if there exist constanis> 0 and M > 1 such that Proof: Construct the following Lyapunov-Krasovskii
||Z(t)|| < M(ﬁeikt, (8) functional:
where V(1) = Vi(z(t) + Va(z(t) + Va(2(1)),
6= sup_|2(0)] Vi((t) = eT ()Pt +22d e%t/ £(s
—7<6<0
and||z|| is the Euclidean norm of. Furthermoref is called e [ o
the exponential convergence rate. Va(z(t)) = e T/ o e~
The following lemmas are employed to derive the new t Tt T
criterion. QZ( )+ [T (2(s))W f(2(s))] ds,
Lemma 1:For any vectors:, b € R", the inequality Va(2(t)) = / / e2t5 57 () 75(5)dsdo),
2a7b < aTXa+bTX b ) ST (12)

whereP = PT > 0,Q = QT >0, W = WT > 0,

Z = 7" > 0, and D = diag(dy,ds,---,d,) > 0 are to

u be determined.

/ [fi(s) = fi(s)] ds < [u—v] [fi(u) — f;(v)], For any appropriately dimensioned matricBs(i = 1,2),
v (10)  the following holds:

holds, whereX is any positive matrix (i.eX > 0).
Lemma 2: [24] Assuming that (6) holds, then

j = 17 2a e, N
0 =2 2T ()T + 27 (1) T3]
I1l. DELAY-DEPENDENTEXPONENTIAL-STABILITY X [2(t) + Cz(t) — Af(z(t)) — Bf(z(t — 7(t)))] .
CRITERION (13)

The following delay-dependent exponential-stability crit d|rt1jzlnns?o:1heed Iﬁﬁﬂ;ﬁ?g‘;&l;‘;\zwu'g’ af:)Sroetrale.appropnately
rion is obtained by employing the free-weighting-matrix ap- ' 9 '
proach described in [33]-[36]. t

Theorem 1:For given scalar : 0 < k < min¢; (i = 0=2e*¢T(t)N - [Z(t) —z(t—7(t)) —/ Z(s)ds| ,
1,---,n), 7 > 0, and d, the origin of system (5) with (6) t=r(t) 14)
and a time delay satisfying conditions (2) and (3) is gIobaII\X,
exponential stable and has the exponential convergence rate

k if there existP = PT > 0,Q = QT >0, W = () = [zZ(t)JT(t)’zT(tT— (1)), [T (2(1)),
WT >0,2 =27 >0, D = diag(dy,da, -, dy) > 0, [ —7@)]".
R = diag(ry,79,--+,mn) > 0, S = diag(s1,s2, -+, 8,) > 0, In addition, for any semi-positive definite matrix

and any appropriately dimensioned matrideqi = 1,2) and
N = [N{ N N{ N{ NT ]T such that the following LMI Xiv Xio Xis Xug Xus
SN S g Xl Xop Xoz Xou Xos

(11) is feasible: X=XT=| X5 XL X33 Xz X35 | >0
o A 1) Xy X X3 Xu Xus
FNT —Fe=27g7 ’ Xt XL XL XL Xss

—_
—
—
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the following holds:

0 < 2kt erT(t)XC(t) — / t CT(t)XC(t)ds] . (15)
t—7(t)
It is clear from (7) that

[z () [f5(2(t)) —
and

fi(zi(t = 7)) - [f5(2(¢

szj(t)] < Oa j: 1,2,"‘,71, (16)

—7(1))) = Ljz(t - ())]<0

7=12,-
(17)
So, for any R = diag(ri,72,-+, ™) > 0, and S =
diag(sy, s2, -+, 8n) > 0, it follows from (16) and (17) that

n

92kt Z i fi(zi () [fi(25(t)) — Lz (¢)]

—2¢2kt Z s; fi(z(t —7(1)))
X [fi(z(t = 7(1)) — Lyz;(t — 7(1))]
= 2% [ZT()LRf(2(t)) — [ (2(1) RS (2(t))
+2T(t — 7(t))LSf(2(t — 7(1)))
—fT(2(t = 7(1)Sf(2(t — 7(1)))] -
(18)

Calculating the derivatives of;(z(t)) (: = 1,2,3) along
the trajectories of the system (5) yields

Vi(2(t) =

0 <

2ke?kt 2T (1) P2(t) + 2e2M 2T (t) P4(t)
£ kdge? [ )

+ ]; 7€ /O f](s) $

+2> " die™ f(2(1)) % (t)

2ke 2t 2T () P2(t) + 2e2k 2T () P2 (t)
+4ke?kt fT(2(t))Dz(t)

+2e25 fT (2(1)) D(t),

AT [T (1Qx(t) + FT(2())W
_ezk?e%(t—r(t))(l _ i‘(t))

X [zT(t —7(t))Qz(t — 7(t))
HfT (2t = T(O)W f(2(t = 7(1)))]
kTR T ()Qz(t) + [T (2()W f
=P (1 — ) [ (t = 7()Qz(t —
HfT (=t = ()W f(2(t = 7(2)

IN

\_/’\
L_l@
~

Va(2(t) =

IA

F=(1))]
7(t))
NI
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(21)

3

Adding the terms on the right of equations (13), (14), (15),

and (18) toV/(z(t)) yields:

V((t))
< g2kt {CT(t) [@+7X]C(t) — /t o 0T (t, s)Un(t, s)ds} ,
(22)
where
n(t,s) = [T () 27(s)]",
ITx N
U= |: NT —Qk?Z ’

and ® is defined in (11). If® + 77X < 0 and ¥ > 0, then
V(z(t)) < 0forany((t) # 0. Let X = 2" NZ~'NT, which
ensures tha’ > 0 and¥ > 0. In this case® + 7X < 0 is
equivalent to= < 0, according to the Schur complement.

It follows from V(z(t)) < 0 that

V(z(1)) < V(2(0)).

(23)

However, applying Lemma 2 yields

2;(0)

V(z(0) = zT(0)P fi(s)ds

(o)+zédj/o

+e2k7"
T
X |z
[ 0
/.
mam( ||¢H2+22d Z]

Jj=1
+62k7_—>\mam (Q) /

0
*6(0)

e2ks

/T(o)
(5)Qz(s) + FT(()W f(2(s))] ds
/9 2557 (3)Z:(3)dsd

IN

0)f;(2;(0))ds

It follows from Lemma 1 that

2T (s)2(s)
= [Cz(s) + Af(2(s)) + Bf(2(s — 7()))]"
x [=Cz(s) + Af(2(s)) + Bf(2(s — 7(s)))]
= 27(s)0TCx(s) + [T (2(5)) AT Af(2(s))
+fT(2(s = 7(5))) BT Bf (2(s — 7(s)))
—22T2(5)CTAf(2(s)) — 22T 2(s)CTBf(2(s — 7(s)))
+2f7(2(s)) AT Bf (2(s — 7(s)))
3[T(s)CTC(s) + [T (2(s ))ATAf( (s))
+fT(2(s = 7(5))) BT Bf (2(s — 7(s)))]
3 [Amaz (CTC) 4+ Mnaa (AT A)Anaa (L?)
+Amaz (BT B)Amaz (L?)] 6]

IN

IN

(25)
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Thus,
V(2(0))

IN

Amaz (P)[|0]1? 4+ 2Amaz (DL)|| 6]
+76%7 N na (Q) || 6]

+7€* Mnae (W) Amaz (L2) || ]2
+372 Amaz(Z) [Amac (CTCO)
+Amaz (AT A) A pax (L?)
+Amaz (BT B)Amax (L?)] [|6]2
Allo|?,

(26)

It is assumed that(t) = 1sin’t. So,7 = pu = 0.5. When

k = 0.05, Theorem 1 in [24] shows the system to be globally
exponentially stable; but Theorem 1 in [15] fails to verify
that. However, Theorem 1 in this paper in combination with
the bisection search method yields= 0.67, for which the
system is globally exponentially stable.

In addition, Theorem 1 is also applicable to cases in which
the derivative of the time delay is greater than or equal to
1. For example, if we letr(t) = sin’t, then7 = pu = 1.

The bisection search method shows the system to be globally

where
A = Anaz(P) 4 2 maz(DL) + 72 Apaa (Q)
+7€2 A nae (W) Amaz (L?)
+372 Amaw(Z) [Amaz (CTC)

+)\mam(ATA))\max(L2) + Amaz(BTB))\mam(Lz)] .

exponentially stable fork
exponential convergence rate bf= 0.37 for 7(t) = 2sin®¢.

In contrast, the method in [15], [24] fails to verify exponential
stability in either of these cases.

0.54. And we obtained an

V. CONCLUSION

In this paper, free-weighting matrices are employed to ex-

On the other hand,

V(z(t) 2 2T (1) P2(t) > M Anin(P) (@)% (27)

press the relationship between the terms in the Leibniz-Newton
formula, and an LMI-based delay-dependent exponential-

stability criterion is derived for delayed neural networks with a

Therefore,
A
)\min (P)

From Definition 1, (5) is exponentially stable and has thefl]
exponential convergence rate This completes the proofm
Remark 1:In the derivation of the delay-dependent
exponential-stability criteria in [24], the negative terms inl2]
the derivative ofV3(¢) are ignored, which may lead to con- 3
servatism. In contrast, the tproof of Theorem 1 shows that
the negative term-¢2#(:—7) :T(s)Z%(s)ds in Zs(z(t)) 4]
t—7(t)

is retained. The free-weighting-matrix approach is employed
to handle it and to derive the delay-dependent exponentiafl
stability criterion.

Iz <

[[plle="". (28)

6]
IV. NUMERICAL EXAMPLES
This section provides two numerical examples that demonr’]

strate the effectiveness of the criterion presented in this paper.
Example 1:Consider the delayed neural network (1) with [8]

2 0 -1 05
C{o 3.5]’A{0.5 —1}’ » [
B 05 051 . _, ) @9 a0y
_{ 0.5 0.5 L 1=Lx=1, () =1 1]
When k& = 0.25 (note that the exponential convergence rate

is k/2 in [24]), Theorem 1 in [24] shows the system to be
globally exponentially stable; but Theorem 3 in [18] fails t¢™
verify that. However, Theorem 1 in this paper in combination
with the bisection search method shows the system to Bél
globally exponentially stable, even fér= 1.15.

Example 2:Consider the delayed neural network (1) with[14]

1 0 —-0.1 01
C:[o 1}*‘:{0.1 _0.1]’ [25)
0.1 0.2 (30)
B = |: 02 01 :| , Ly =Ly =1. [16]

time-varying delay. Two numerical examples demonstrate that
this method is an improvement over existing ones.
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