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Delay-dependent exponential stability of delayed
neural networks with time-varying delay
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Abstract— In this paper, free-weighting matrices are employed
to express the relationship between the terms in the Leibniz-
Newton formula; and based on that relationship, a new delay-
dependent exponential-stability criterion is derived for delayed
neural networks with a time-varying delay. Two numerical
examples demonstrate the improvement this method provides
over existing ones.

Index Terms— neural networks, delay-dependent criterion, ex-
ponential stability, linear matrix inequality (LMI), free-weighting
matrix approach.

I. I NTRODUCTION

Neural networks have been extensively studied over the
past few decades and have found application in a variety
of areas, such as pattern recognition, associative memory,
and combinatorial optimization. These applications strongly
depend on the dynamic behavior of the network. In recent
years, considerable effort has been devoted to analyzing the
stability of neural networks without a time delay.

In reality, however, the dynamics of a neural network
often involves time delays due, for example, to the finite
switching speed of amplifiers in electronic neural networks,
or to the finite signal propagation time in biological networks.
Recently, the stability of delayed neural networks has received
considerable attention (see e.g. [1]–[26]). The criteria derived
in these papers are based on various types of stability, such
as asymptotic stability, complete stability, absolute stability,
and exponential stability. As pointed out in [13], the property
of exponential stability is particularly important when the
exponential convergence rate is used to determine the speed
of neural computations. Thus, in general, it is not only
theoretically interesting but also of practical importance to
determine the exponential stability of, and to estimate the
exponential convergence rate of, dynamic neural networks. Ac-
cordingly, a great number of sufficient conditions guaranteeing
the global exponential stability of delayed neural networks
with constant and time-varying delays have been derived [1],
[4], [13], [19], [20], [24], [27]–[32]. Among them, delay-
dependent exponential-stability criteria have attracted much
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attention recently [13], [24] because delay-dependent criteria
make use of information on the length of delays, and are
less conservative than delay-independent ones. However, some
negative terms in the derivative of the Lyapunov functional
tend to be ignored when delay-dependent stability criteria are
derived [13], [24]. This may lead to considerable conserva-
tiveness. It is also worth mentioning that, in those papers,
the restriction that the derivative of a time-varying delay be
less than 1 is imposed on stability criteria for neural networks
with a time-varying delay. Recently, a free-weighting-matrix
approach was proposed [33]–[36] in which free weighting
matrices are employed to express the relationship between the
terms of the Leibniz-Newton formula; and all the negative
terms in the derivative of the Lyapunov functional are retained.
This approach avoids the restriction on the derivative of a time-
varying delay.

In this paper, the free-weighting-matrix approach is em-
ployed to derive an LMI-based delay-dependent exponential-
stability criterion for neural networks with a time-varying
delay. Unlike existing ones, this criterion allows the derivative
of a time-varying delay to take any value. And since the
negative terms in the derivative of the Lyapunov functional
are retained, this criterion is less conservative than existing
ones. Numerical examples demonstrate the effectiveness of
this method.

II. SYSTEM DESCRIPTION

Consider the following delayed neural network:

ẋ(t) = −Cx(t) + Ag(x(t)) + Bg(x(t− τ(t))) + u, (1)

where x(·) = [x1(·), x2(·), · · · , xn(·)]T ∈ Rn is the
neuron state vector;g(x(·)) = [g1(x1(·)), g2(x2(·)), · · ·,
gn(xn(·))]T ∈ Rn denotes the neuron activation function;
u = [u1, u2, · · · , un]T ∈ Rn is a constant input vector;
C = diag{c1, c2, · · ·, cn} is a diagonal matrix withci > 0;
andA andB are the connection weight matrix and the delayed
connection weight matrix, respectively, The time delay,τ(t),
is a time-varying differentiable function that satisfies

0 ≤ τ(t) ≤ τ̄ , (2)

τ̇(t) ≤ µ, (3)

where µ is a constant. In addition, it is assumed that each
neuron activation function in (1),gj(·), j = 1, 2, · · · , n,
satisfies the following condition:

0 ≤ gj(x)− gj(y)
x− y

≤ Lj , ∀ x, y ∈ R, x 6= y, j = 1, 2, · · · , n,

(4)
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テキストボックス
IEEE Transactions on Circuits and Systems---II: Express Briefs, Vol. 53, No. 7, July, 2006.



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XXXX 20XX 2

whereLj , j = 1, 2, · · · , n are positive constants.
In the following, the equilibrium pointx∗ = [x∗1, x∗2, · · ·,

x∗n]T of (1) is first shifted to the origin by the transformation
z(·) = x(·)− x∗, which converts the system to the following
form:

ż(t) = −Cz(t) + Af(z(t)) + Bf(z(t− τ(t))), (5)

wherez(·) = [z1(·), z2(·), · · · , zn(·)]T is the state vector of
the transformed system;f(z(·)) = [f1(z1(·)), f2(z2(·)), · · ·,
fn(zn(·))]T ; and fj(zj(·)) = gj(zj(·) + z∗j ) − gj(z∗j ), j =
1, 2, · · · , n. Note that the functionsfj(·) (j = 1, 2, · · · , n)
satisfy the following condition:

0 ≤ fj(zj)
zj

≤ Lj , fj(0) = 0, ∀zj 6= 0, j = 1, 2, · · · , n,

(6)
which is equivalent to

fj(zj) [fj(zj)− Ljzj ] ≤ 0, fj(0) = 0, j = 1, 2, · · · , n.
(7)

The definition of exponential stability is now given.
Definition 1: The system (5) is said to be exponentially

stable if there exist constantsk > 0 andM ≥ 1 such that

‖z(t)‖ ≤ Mφe−kt, (8)

where
φ = sup

−τ̄≤θ≤0
‖z(θ)‖

and‖z‖ is the Euclidean norm ofz. Furthermore,k is called
the exponential convergence rate.

The following lemmas are employed to derive the new
criterion.

Lemma 1:For any vectorsa, b ∈ Rn, the inequality

2aT b ≤ aT Xa + bT X−1b (9)

holds, whereX is any positive matrix (i.e.X > 0).
Lemma 2: [24] Assuming that (6) holds, then
∫ u

v

[fi(s)− fj(s)] ds ≤ [u− v] [fi(u)− fi(v)] ,

j = 1, 2, · · · , n.
(10)

III. D ELAY-DEPENDENTEXPONENTIAL-STABILITY

CRITERION

The following delay-dependent exponential-stability crite-
rion is obtained by employing the free-weighting-matrix ap-
proach described in [33]–[36].

Theorem 1:For given scalarsk : 0 < k < min ci (i =
1, · · · , n), τ̄ ≥ 0, and d, the origin of system (5) with (6)
and a time delay satisfying conditions (2) and (3) is globally
exponential stable and has the exponential convergence rate
k if there exist P = PT > 0, Q = QT > 0 , W =
WT > 0, Z = ZT > 0, D = diag(d1, d2, · · · , dn) ≥ 0,
R = diag(r1, r2, · · · , rn) ≥ 0, S = diag(s1, s2, · · · , sn) ≥ 0,
and any appropriately dimensioned matricesTi (i = 1, 2) and
N =

[
NT

1 NT
2 NT

3 NT
4 NT

5

]T
such that the following LMI

(11) is feasible:

Ξ =
[

Φ τ̄N
τ̄NT −τ̄ e−2kτ̄Z

]
< 0, (11)

where

Φ =




Φ11 Φ12 Φ13 Φ14 Φ15

ΦT
12 Φ22 Φ23 Φ24 Φ25

ΦT
13 ΦT

23 Φ33 Φ34 Φ35

ΦT
14 ΦT

24 ΦT
34 Φ44 0

ΦT
15 ΦT

25 ΦT
35 0 Φ55




,

Φ11 = 2kP + T1C + CT TT
1 + N1 + NT

1 + e2kτ̄Q,
Φ12 = P + T1 + CT TT

2 + NT
2 ,

Φ13 = NT
3 −N1,

Φ14 = 2kD − T1A + LR + NT
4 ,

Φ15 = −T1B + NT
5 ,

Φ22 = T2 + TT
2 + τ̄Z,

Φ23 = −N2,
Φ24 = D − T2A,
Φ25 = −T2B,
Φ33 = −(1− µ)Q−N3 −NT

3 ,
Φ34 = −NT

4 ,
Φ35 = LS −NT

5 ,
Φ44 = e2kτ̄W − 2R,
Φ55 = −(1− µ)W − 2S,
L = diag(L1, L2, · · · , Ln).

Proof: Construct the following Lyapunov-Krasovskii
functional:

V (z(t)) = V1(z(t)) + V2(z(t)) + V3(z(t)),

V1(z(t)) = e2ktzT (t)Pz(t) + 2
n∑

j=1

dje
2kt

∫ zj

0

fj(s)ds,

V2(z(t)) = e2kτ̄

∫ t

t−τ(t)

e2ks

× [
zT (s)Qz(s) + fT (z(s))Wf(z(s))

]
ds,

V3(z(t)) =
∫ 0

−τ̄

∫ t

t+θ

e2ksżT (s)Zż(s)dsdθ,

(12)
where P = PT > 0, Q = QT > 0, W = WT > 0,
Z = ZT > 0, and D = diag(d1, d2, · · · , dn) ≥ 0 are to
be determined.

For any appropriately dimensioned matricesTi (i = 1, 2),
the following holds:

0 = 2e2kt
[
zT (t)T1 + żT (t)T2

]
× [ż(t) + Cz(t)−Af(z(t))−Bf(z(t− τ(t)))] .

(13)
Using the Leibniz-Newton formula, for any appropriately

dimensioned matrixN , the following is also true:

0 = 2e2ktζT (t)N ·
[
z(t)− z(t− τ(t))−

∫ t

t−τ(t)

ż(s)ds

]
,

(14)
where

ζ(t) = [zT (t), żT (t), zT (t− τ(t)), fT (z(t)),
fT (z(t− τ(t)))]T .

In addition, for any semi-positive definite matrix

X = XT =




X11 X12 X13 X14 X15

XT
12 X22 X23 X24 X25

XT
13 XT

23 X33 X34 X35

XT
14 XT

24 XT
34 X44 X45

XT
15 XT

25 XT
35 XT

45 X55



≥ 0,
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the following holds:

0 ≤ e2kt

[
τ̄ ζT (t)Xζ(t)−

∫ t

t−τ(t)

ζT (t)Xζ(t)ds

]
. (15)

It is clear from (7) that

fj(zj(t)) [fj(zj(t))− Ljzj(t)] ≤ 0, j = 1, 2, · · · , n, (16)

and

fj(zj(t− τ(t))) · [fj(zj(t− τ(t)))− Ljzj(t− τ(t))] ≤ 0,
j = 1, 2, · · · , n.

(17)
So, for any R = diag(r1, r2, · · ·, rn) ≥ 0, and S =
diag(s1, s2, · · · , sn) ≥ 0, it follows from (16) and (17) that

0 ≤ −2e2kt
n∑

j=1

rjfj(zj(t)) [fj(zj(t))− Ljzj(t)]

−2e2kt
n∑

j=1

sjfj(zj(t− τ(t)))

× [fj(zj(t− τ(t)))− Ljzj(t− τ(t))]
= 2e2kt

[
zT (t)LRf(z(t))− fT (z(t))Rf(z(t))

+zT (t− τ(t))LSf(z(t− τ(t)))
−fT (z(t− τ(t)))Sf(z(t− τ(t)))

]
.

(18)
Calculating the derivatives ofVi(z(t)) (i = 1, 2, 3) along

the trajectories of the system (5) yields

V̇1(z(t)) = 2ke2ktzT (t)Pz(t) + 2e2ktzT (t)P ż(t)

+4
n∑

j=1

kdje
2kt

∫ zj

0

fj(s)ds

+2
n∑

j=1

dje
2ktfj(zj(t))żj(t)

≤ 2ke2ktzT (t)Pz(t) + 2e2ktzT (t)P ż(t)
+4ke2ktfT (z(t))Dz(t)
+2e2ktfT (z(t))Dż(t),

(19)
V̇2(z(t)) = e2kτ̄e2kt

[
zT (t)Qz(t) + fT (z(t))Wf(z(t))

]

−e2kτ̄e2k(t−τ(t))(1− τ̇(t))
× [

zT (t− τ(t))Qz(t− τ(t))
+fT (z(t− τ(t)))Wf(z(t− τ(t)))

]

≤ e2kτ̄e2kt
[
zT (t)Qz(t) + fT (z(t))Wf(z(t))

]

−e2kt(1− µ)
[
zT (t− τ(t))Qz(t− τ(t))

+fT (z(t− τ(t)))Wf(z(t− τ(t)))
]
,

(20)

V̇3(z(t)) = τ̄ e2ktżT (t)Zż(t)−
∫ t

t−τ̄

e2ksżT (s)Zż(s)ds

≤ τ̄ e2ktżT (t)Zż(t)

−e2k(t−τ̄)

∫ t

t−τ̄

żT (s)Zż(s)ds

≤ τ̄ e2ktżT (t)Zż(t)

−e2k(t−τ̄)

∫ t

t−τ(t)

żT (s)Zż(s)ds.

(21)

Adding the terms on the right of equations (13), (14), (15),
and (18) toV̇ (z(t)) yields:

V̇ (z(t))

≤ e2kt

{
ζT (t) [Φ + τ̄X] ζ(t)−

∫ t

t−τ(t)

ηT (t, s)Ψη(t, s)ds

}
,

(22)
where

η(t, s) = [ζT (t) żT (s)]T ,

Ψ =
[

X N
NT e−2kτ̄Z

]
,

and Φ is defined in (11). IfΦ + τ̄X < 0 and Ψ ≥ 0, then
V̇ (z(t)) < 0 for anyζ(t) 6= 0. Let X = e2kτ̄NZ−1NT , which
ensures thatX ≥ 0 andΨ ≥ 0. In this case,Φ + τ̄X < 0 is
equivalent toΞ < 0, according to the Schur complement.

It follows from V̇ (z(t)) < 0 that

V (z(t)) ≤ V (z(0)). (23)

However, applying Lemma 2 yields

V (z(0)) = zT (0)Pz(0) + 2
n∑

j=1

dj

∫ zj(0)

0

fj(s)ds

+e2kτ̄

∫ 0

−τ(0)

e2ks

× [
zT (s)Qz(s) + fT (z(s))Wf(z(s))

]
ds

+
∫ 0

−τ̄

∫ 0

θ

e2ksżT (s)Zż(s)dsdθ

≤ λmax(P )‖φ‖2 + 2
n∑

j=1

djzj(0)fj(zj(0))ds

+e2kτ̄λmax(Q)
∫ 0

−τ(0)

zT (s)z(s)ds

+e2kτ̄λmax(W )
∫ 0

−τ(0)

fT (z(s))f(z(s))ds

+λmax(Z)
∫ 0

−τ̄

∫ 0

θ

żT (s)ż(s)dsdθ.

(24)
It follows from Lemma 1 that

żT (s)ż(s)

= [−Cz(s) + Af(z(s)) + Bf(z(s− τ(s)))]T

× [−Cz(s) + Af(z(s)) + Bf(z(s− τ(s)))]
= zT (s)CT Cz(s) + fT (z(s))AT Af(z(s))

+fT (z(s− τ(s)))BT Bf(z(s− τ(s)))
−2zT z(s)CT Af(z(s))− 2zT z(s)CT Bf(z(s− τ(s)))
+2fT (z(s))AT Bf(z(s− τ(s)))

≤ 3
[
zT (s)CT Cz(s) + fT (z(s))AT Af(z(s))

+fT (z(s− τ(s)))BT Bf(z(s− τ(s)))
]

≤ 3
[
λmax(CT C) + λmax(AT A)λmax(L2)

+λmax(BT B)λmax(L2)
] ‖φ‖2.

(25)
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Thus,

V (z(0)) ≤ λmax(P )‖φ‖2 + 2λmax(DL)‖φ‖2
+τ̄ e2kτ̄λmax(Q)‖φ‖2
+τ̄ e2kτ̄λmax(W )λmax(L2)‖φ‖2
+3τ̄2λmax(Z)

[
λmax(CT C)

+λmax(AT A)λmax(L2)
+λmax(BT B)λmax(L2)

] ‖φ‖2
= Λ‖φ‖2,

(26)

where

Λ = λmax(P ) + 2λmax(DL) + τ̄ e2kτ̄λmax(Q)
+τ̄ e2kτ̄λmax(W )λmax(L2)
+3τ̄2λmax(Z)

[
λmax(CT C)

+λmax(AT A)λmax(L2) + λmax(BT B)λmax(L2)
]
.

On the other hand,

V (z(t)) ≥ e2ktzT (t)Pz(t) ≥ e2ktλmin(P )‖z(t)‖2. (27)

Therefore,

‖z(t)‖ ≤
√

Λ
λmin(P )

‖φ‖e−kt. (28)

From Definition 1, (5) is exponentially stable and has the
exponential convergence ratek. This completes the proof.

Remark 1: In the derivation of the delay-dependent
exponential-stability criteria in [24], the negative terms in
the derivative ofV3(t) are ignored, which may lead to con-
servatism. In contrast, the proof of Theorem 1 shows that

the negative term−e2k(t−τ̄)

∫ t

t−τ(t)

żT (s)Zż(s)ds in Ż3(z(t))

is retained. The free-weighting-matrix approach is employed
to handle it and to derive the delay-dependent exponential-
stability criterion.

IV. N UMERICAL EXAMPLES

This section provides two numerical examples that demon-
strate the effectiveness of the criterion presented in this paper.

Example 1:Consider the delayed neural network (1) with

C =
[

2 0
0 3.5

]
, A =

[ −1 0.5
0.5 −1

]
,

B =
[ −0.5 0.5

0.5 0.5

]
, L1 = L2 = 1, τ(t) = 1.

(29)

When k = 0.25 (note that the exponential convergence rate
is k/2 in [24]), Theorem 1 in [24] shows the system to be
globally exponentially stable; but Theorem 3 in [18] fails to
verify that. However, Theorem 1 in this paper in combination
with the bisection search method shows the system to be
globally exponentially stable, even fork = 1.15.

Example 2:Consider the delayed neural network (1) with

C =
[

1 0
0 1

]
, A =

[ −0.1 0.1
0.1 −0.1

]
,

B =
[ −0.1 0.2

0.2 0.1

]
, L1 = L2 = 1.

(30)

It is assumed thatτ(t) = 1
2 sin2 t. So, τ̄ = µ = 0.5. When

k = 0.05, Theorem 1 in [24] shows the system to be globally
exponentially stable; but Theorem 1 in [15] fails to verify
that. However, Theorem 1 in this paper in combination with
the bisection search method yieldsk = 0.67, for which the
system is globally exponentially stable.

In addition, Theorem 1 is also applicable to cases in which
the derivative of the time delay is greater than or equal to
1. For example, if we letτ(t) = sin2 t, then τ̄ = µ = 1.
The bisection search method shows the system to be globally
exponentially stable fork = 0.54. And we obtained an
exponential convergence rate ofk = 0.37 for τ(t) = 2 sin2 t.
In contrast, the method in [15], [24] fails to verify exponential
stability in either of these cases.

V. CONCLUSION

In this paper, free-weighting matrices are employed to ex-
press the relationship between the terms in the Leibniz-Newton
formula, and an LMI-based delay-dependent exponential-
stability criterion is derived for delayed neural networks with a
time-varying delay. Two numerical examples demonstrate that
this method is an improvement over existing ones.
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