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An Improved Global Asymptotic Stability Criterion
for Delayed Cellular Neural Networks

Yong He, Min Wu, and Jin-Hua She,Member, IEEE,

Abstract— A new Lyapunov-Krasovskii functional is con-
structed for delayed cellular neural networks, and the S-
procedure is employed to handle the nonlinearities. An improved
global asymptotic stability criterion is also derived that is a
generalization of, and an improvement over, previous results. Nu-
merical examples demonstrate the effectiveness of the criterion.

Index Terms— global asymptotic stability, delayed cellular
neural networks, linear matrix inequality (LMI), S-procedure.

I. I NTRODUCTION

Cellular neural networks (CNNs) were first proposed in [1].
They have found application in many areas such as signal
processing, pattern recognition, and static image processing.
A CNN with a delay, which is called a delayed cellular
neural network (DCNN), was first reported in [2] and has
been the subject of many studies over the past few years
(e.g., [3]–[21]). Among them, [3] and [4] presented some
exponential stability criteria for DCNNs; but their treatment of
nonlinearities by using inequalities was conservative. On the
other hand, linear matrix inequalities (LMIs) are an efficient
method of solving standard convex optimization problems
numerically. Singh derived an LMI-based criterion [5], which
was a generalization of, and an improvement over, previous
criteria, such as [6]–[9]. Later, Zhanget al. extended those
results to handle DCNNs with a time-varying delay and
time-varying structured uncertainties [10]. However, there is
room for further investigation. First, the constraints on the
nonlinearities in [5] are very strict, i.e., the upper bounds of
the sectors are all set to 1. Even though they were relaxed to
k in [10], all the bounds were set to the same value. Second,
the S-procedure [22], [23] was employed to deal with the
constraints in [5]. However, the parameters in the S-procedure
were exactly the same as those in the Lyapunov-Krasovskii
functional, which may also lead to conservatism. Third, the
Lyapunov-Krasovskii functional did not contain an integral
term of state, which has proven to be very effective in handling
delay systems.

This note presents a new Lyapunov-Krasovskii functional
containing an integral term of state for DCNNs; and shows
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how the S-procedure can be employed to derive an LMI-based
global asymptotic stability criterion. Moreover, it shows that
the criterion in [5] is a special case of the one in this paper.
Finally, numerical examples demonstrate the effectiveness of
this approach, and that it is an improvement over previous
ones.

II. SYSTEM DESCRIPTION

Consider the following DCNN:

ẋ(t) = −x(t) + Ag(x(t)) + Aτg(x(t− τ(t))) + u, (1)

where x(·) = [x1(·), x2(·), · · · , xn(·)]T is the neuron state
vector,g(x(·)) = [g1(x1(·)), g2(x2(·)), · · · , gn(xn(·))]T is the
output vector, andu = [u1, u2, · · · , un]T is a constant input
vector. A is a feedback matrix, andAτ is a delayed feed-
back matrix. The delay,τ(t), is a time-varying differentiable
function satisfying

τ̇(t) ≤ µ, (2)

whereµ is a constant. In addition, it is assumed that each neu-
ron activation function in system (1),gj(·), j = 1, 2, · · · , n,
satisfies the following condition:

0 ≤ gj(x)− gj(y)
x− y

≤ kj ,

∀ x, y ∈ R, x 6= y, j = 1, 2, · · · , n,
(3)

wherekj , j = 1, 2, · · · , n are positive constants.
Now, we shift the equilibrium pointx∗ = [x∗1, x

∗
2, · · · , x∗n]T

of system (1) to the origin by introducing a new statez(·) =
x(·)− x∗, which transforms the system into the following:

ż(t) = −z(t) + Aφ(z(t)) + Aτφ(z(t− τ(t))), (4)

where z(·) = [z1(·), z2(·), · · · , zn(·)]T is the state
vector of the transformed system, andφ(z(·)) =
[φ1(z1(·)), φ2(z2(·)), · · · , φn(zn(·))]T and φj(zj(·)) =
gj(zj(·) + x∗j ) − gj(x∗j ), j = 1, 2, · · · , n. Note that the
functions φj(·), j = 1, 2, · · · , n satisfy the following
conditions:

0 ≤ φj(zj)
zj

≤ kj , φj(0) = 0, ∀zj 6= 0, j = 1, 2, · · · , n,

(5)
which are equivalent to

φj(zj) [φj(zj)− kjzj ] ≤ 0, φj(0) = 0, j = 1, 2, · · · , n.
(6)

The S-procedure is employed to investigate the asymptotic
stability of system (4), and is stated as follows:
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Lemma 1: [22], [23] (S-procedure) LetTi ∈ Rn×n (i =
0, 1, · · · , p) be symmetric matrices. The conditions onTi (i =
0, 1, · · · , p),

ζT T0ζ > 0, ∀ζ 6= 0 s.t. ζT Tiζ ≥ 0 (i = 1, 2, · · · , p), (7)

hold if there existτi ≥ 0 (i = 1, 2, · · · , p) such that

T0 −
p∑

i=1

τiTi > 0. (8)

III. STABILITY CRITERION

In this section, a new Lyapunov-Krasovskii functional
containing an integral term of state is constructed. The S-
procedure is employed to deal with nonlinearities. And the
following asymptotic stability criterion is obtained.

Theorem 1:The origin of system (4) subject to conditions
(5) and (2) is globally asymptotically stable if there exist
P = PT > 0, R = RT > 0 , Q = QT > 0, D =
diag(d1, d2, · · · , dn) ≥ 0, T = diag(t1, t2, · · · , tn) ≥ 0, and
S = diag(s1, s2, · · · , sn) ≥ 0 such that the following LMI is
feasible:

Φ=




Φ11 0 Φ13 PAτ

0 −(1− µ)R 0 KS
ΦT

13 0 Φ33 DAτ

Aτ
T P SK Aτ

T D −(1−µ)Q−2S


 < 0,

(9)
where

Φ11 = −2P + R,

Φ13 = PA−D + KT ,

Φ33 = DA + AT D + Q− 2T ,

K = diag{k1, k2, · · · , kn}.
Proof: Construct the following Lyapunov-Krasovskii

functional:

V (z(t)) = zT (t)Pz(t) + 2
n∑

j=1

dj

∫ zj

0

φj(s)ds

+
∫ t

t−τ(t)

[
zT (s)Rz(s) + φT (z(s))Qf(z(s))

]
ds,

(10)
where P = PT > 0, R = RT > 0, Q = QT > 0, D =
diag(d1, d2, · · · , dn) ≥ 0 are to be determined. Calculating the
derivative ofV (z(t)) along the solution of system (4) yields

V̇ (z(t))

= 2zT (t)P ż(t) + 2
n∑

j=1

djφj(zj(t))żj(t)

+
[||z(t)||2R − (1− τ̇(t))||z(t− τ(t))||2R

]

+
[||φ(z(t))||2Q − (1− τ̇(t))||φ(z(t− τ(t))||2Q

]

≤ 2zT (t)P ż(t) + 2φT (z(t))Dż(t)
+

[||z(t)||2R − (1− µ)||z(t− τ(t))||2R
]

+
[||φ(z(t))||2Q − (1− µ)||φ(z(t− τ(t))||2Q

]
,

(11)

where
||x(t)||2Q := xT (t)Qx(t). (12)

It is clear from (6) that

φj(zj(t)) [φj(zj(t))− kjzj(t)] ≤ 0, j = 1, 2, · · · , n (13)

and

φj(zj(t− τ(t))) [φj(zj(t− τ(t)))− kjzj(t− τ(t))] ≤ 0,
j = 1, 2, · · · , n

(14)
hold. Thus, by applying the S-procedure, we find that
system (4) is asymptotically stable if there existT =
diag(t1, t2, · · · , tn) ≥ 0 and S = diag(s1, s2, · · · , sn) ≥ 0
such that

V̇ (z(t))− 2
n∑

j=1

tjφj(zj(t)) [φj(zj(t))− kjzj(t)]

−2
n∑

j=1

sjφj(zj(t−τ(t))) [φj(zj(t−τ(t)))−kjzj(t−τ(t))]

≤ ξT (t)Φξ(t)
< 0

(15)
for all ξ(t) 6= 0, where

ξ(t) = [zT (t), zT (t− τ(t)), φT (z(t)), φT (z(t− τ(t)))]T .

This completes the proof.
Remark 1:Unlike the Lyapunov-Krasovskii functionals in

[5] and [10], the one above contains an integral term of state,∫ t

t−τ(t)

xT (s)Rx(s)ds (10). The advantage of this is that the

delay term can be reserved so that the S-procedure can be
applied to both the state and delay terms. Singh also employed
the S-procedure in deriving the criterion in [5]. However,
the same parameter,D, was used in both the S-procedure
and the Lyapunov matrix; and the S-procedure was applied
only to the state. In contrast, in Theorem 1, the Lyapunov
matrix, D, is different from the parameter matrices,T and
S, used in the S-procedure. This treatment allows us to fully
exploit the potential of the S-procedure, and further reduces
the conservatism. As for the nonlinear constraints, the cases
k1 = k2 = · · · = kn = 1 and k1 = k2 = · · · = kn = k
were considered in [5] and [10], respectively. However, the
S-procedure in this note can handle more general nonlinear
constraints (6). In fact, if we setT = D, S = 0 andR = εI,
whereε is a sufficiently small positive scalar, then Theorem
1 in this note yields Theorem 1 in [5]. So, the matricesT, S
and R provide extra freedom in parameter selection, which
can potentially yield less conservative results.

IV. EXAMPLES

The two examples in this section demonstrate the validity
of the new criterion.

Example 1:Consider the second-order DCNN (4) with the
following parameters

A =
[

0 1
−1 −1

]
, Aτ =

[
0.5 0.5
1 0

]
.

Whenµ = 0, Theorem 1 in [5] can handle only the casek1 =
k2 = 1. In contrast, using LMI (9) in Theorem 1, we found
that the system is asymptotically stable fork1 = k2 = 1.55.
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Moreover, Theorem 1 can also handle a time-varying delay.
Table I lists the upper bounds onk2 for k1 = 1.2 and various
µ whenτ(t) is time-varying andk1 is fixed.

TABLE I

UPPER BOUNDS ONk2 FOR k1 = 1.2 AND VARIOUS µ.

µ 0.1 0.2 0.3 0.4 0.5
k2 7.15 2.49 1.19 0.58 0.21

Example 2:Consider the second-order DCNN (4) with the
following parameters

A =
[

0.5 0.5
−1 −0.5

]
, Aτ =

[
0.5 0.5
0.5 0

]
.

Whenµ = 0, Theorem 1 in [5] and Theorem 1 in [10], as well
as Theorem 1 in [3] and Theorem 1 in [4] (k = 0) all fail when
k1 = k2 = 1. However, Theorem 1 in this note shows that the
system is asymptotically stable in this case. Furthermore, it
also shows that the asymptotic stability is guaranteed, even
whenk1 = 1 andk2 = 1.55.

V. CONCLUSION

This note presents a new Lyapunov-Krasovskii functional
containing an integral term of state for DCNNs. The S-
procedure was employed to deal with nonlinearities, and a
less conservative global asymptotic stability criterion was
derived. Numerical examples demonstrated the effectiveness
of this approach and that it is an improvement over previous
treatments.
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