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Abstract— This paper proposes a new approach to disturbance
estimation based on a curvature model to improve the distur-
bance rejection performance of a servo system. The main feature
is that the stability of the control system is guaranteed when the
disturbance estimate is incorporated directly into the designed
servo control law. Experimental results show that disturbances
are rejected efficiently when this approach is used.

Index Terms— servo system, circle of curvature, disturbance
estimation, disturbance rejection, globally uniformly ultimately
bounded (GUUB), optimal control.

I. INTRODUCTION

D ISTURBANCE rejection is an important issue in the
design of servo systems. It is well known that the perfect

rejection of a disturbance in a servo system can be achieved
either by using a feedforward control strategy if we have
complete knowledge of the disturbance or can measure it
directly, or by inserting an internal model of the disturbance
generator into the servo controller if the key characteristics of
the disturbance are known [1]. However, it is rare that we have
complete knowledge of the disturbance or can make use of
information about it directly. Usually, we do not even know all
the characteristics of a disturbance because a disturbance in the
system usually covers a wide frequency band in many control
applications. So, it is difficult to provide the desired rejection
performance. While several methods of rejecting disturbances
have been proposed (e.g., [2]–[4]) to improve the performance,
they require some a priori information about a disturbance;
otherwise, the design of the controller is complicated.

In this paper, a new approach to disturbance estimation
based on a curvature model is proposed to improve the
performance of disturbance rejection in a servo system. The
characteristics of this method are that disturbances are re-
produced satisfactorily even though the estimation model is
very simple; the stability of the system is guaranteed when
the disturbance estimate is incorporated directly into the
designed servo control law; and no a priori information about
a disturbance, such as the peak value, is needed.

Throughout this paper, �� means an �� � identity matrix;
���� indicates a matrix with � rows and � columns; ����� is
the Euclidean norm of matrix or vector �; and � �

���
�� is an

infinitesimal with the same order as � � . For a vector-valued
sequence ����� � � �� �� � � �, ������ � ���� ��������; and for a
system �, ������ � ����������� ���	���.
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This paper is organized as follows. The design of a servo
controller is outlined in Section II. The method of disturbance
estimation is described in Section III. Then, the incorporation
of the estimate into a servo control law in order to reject
disturbances is explained in Section IV. Section V gives some
experimental results to show the validity of the method, and
some concluding remarks are made in Section VI.

II. DESIGN OF SERVO CONTROLLER

The configuration of a conventional servo system is shown
in Fig. 1. An exogenous disturbance, 
���, is assumed to be
added to the input channel. The plant, � ���, and the servo
controller, 
���, are respectively given by

� �

�
�� �� 	 �� � ���� ��� 	�� 
���� 	 
�����
���� � ���� ����

(1)

and


 �

�
���� 	 �� � ������� 	�������
���� � ������� 	 ����� ��� 	�������

(2)

where �� ��� � ��� , ����� � ��, ���� � �, ���� � �,

��� � � and ���� � � are the states of the plant and servo
controller, output, control input, disturbances and tracking
error, respectively. The following assumptions are made in this
study.

Assumption 1: ��� � �� � is controllable.
Assumption 2: The state of the plant, �� ���, is available.
Assumption 3: The disturbance, 
���, is bounded and

smooth enough.
Many approaches to the design of a servo controller have

been proposed (e.g., [1], [5]–[7]). In what follows, we show
an optimal design method for a servo controller. 
��� � � is
assumed in order to focus on the tracking problem.

Let the reference input be generated by

������ � � 	 �����
�� 	 � � �	 ������ (3)

i.e.,
���������� � ��

r (k) e(k) y(k)
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P
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K
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x (k)P

Fig. 1. Conventional servo system.
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Then, �� and �� in (2) can be written as

�� �

�
�������� ����

��� ���� � � � � �����
�
�

�� �

�
��������

�

�
�

Note that

��������� 	 �� � ��������� 	 ��� ��������� 	 ��
� ��������� ����� ��� 	������� �

and let ��� ��� � �������� ��� and ����� � ����������.
The dynamics of the controller (2) can then be rewritten in
terms of the tracking error as follows:

��� 	 �� � ������ 	������ ��� 	��������� (4)

���� �� 
��� � �	 �� ��� � �	 
� � � � �����	 �

��� �

�
���������

�����

�
� ��� �

�
��������

�����

�
�

The relationship between ���� �� and �����
����, a compo-
nent of ����� � 
������ � � � �������	 , is

��� � �� � �����������
��� 	 ��� � � �� � � � � �� �� (5)

Multiplying both sides of the system equation in (1) by
������ and combining it with (4) yields the following single
augmented state representation of the whole system.

��� 	 �� � ����� 	������� (6)

���� ��
�
�	 ��� ��	

�
���

�	
�

� �

�
�� ���

����� ��

�
� � �

�
���
��

�
�

Now, the design problem can be stated as:
Design a state feedback controller

����� � ������ � 
�� �� �
�
	 ��� ��	

� ����
	 (7)

that guarantees the internal stability of the servo system.
An optimal controller is designed by minimizing the per-

formance index

� �

��
���


�	 �������� 	 ��������� (8)

� 	 �� �  ��

and the resulting control law is given by

� � �	�	����	����	�	������	���
�� � ���	�	������	���

Substituting (5) into (7) and dividing (7) by ������ yields the
control law

���� � 
�� �� �
�
	

��� 	 �� �	� ����
	 � (9)

Furthermore, if we let

�� �
�
�� �� � � � ����

�
�

the feedback gains in (2) are

�� � 
������� ��������� � � � �������������� �
��� � �� � �� � �����

Remark 1: In the design of the servo controller, 
���, we
assumed that 
��� � �. It is well known that disturbance
rejection performance depends on the sensitivity function, !,
of the system; and optimal control gives �!� 
 � [7]. So,
generally speaking, the designed servo controller suppresses
disturbances as well. And the disturbance rejection perfor-
mance can further be tuned by choosing suitable diagonal
elements related to ���� in the weighting matrix, �, in (8),
which is associated with !.

III. DISTURBANCE ESTIMATION

Perfect disturbance rejection is obtained for signals for
which the controller, 
���, contains an internal model. How-
ever, if the controller does not contain an internal model of the
disturbance, good rejection performance cannot be expected.
Generally speaking, the peak value of the tracking error is
proportional to the peak value of the disturbance. If some a
priori information about a disturbance, e.g. the peak value, is
known, a nonlinear control law can be designed to reject it
[8]. In this paper, we do not use such a priori information.
The only assumption about a disturbance is that the sampling
frequency is high enough that the disturbance is smooth
enough.

Haskara et al. [2] have proposed a method of estimating
disturbances using a linear model. In their method, the order
of the estimator must be very high in order to obtain a precise
estimate. In contrast, the estimation model described in this
paper is of a low order; and in spite of that, the estimates are
very precise. More specifically, the precision is proportional
to the square of the sampling time.

Komada and Ohnisih [3] have proposed a method called
disturbance observer to estimate a disturbance, and the method
has been applied to several electro-mechanical systems [4], [9],
[10]. In their method, the disturbance is first described by


��� �
�

�
����� ����� (10)

Since �"� ��� is not proper, the disturbance cannot be obtained
directly from (10). A low-pass filter, � ���, is used to make
� ���"� ��� proper, and the disturbance is estimated by

�
��� �
�

�
����� ����� (11)

Note that (11) cannot be used for a continuous plant with
unstable poles/zeros because unstable pole-zero cancellations
would occur. Even if a continuous plant has no unstable
poles/zeros, (11) still cannot be used when the relative degree
of the continuous plant is higher than two because unstable
limiting zeros occur in the pulse-transfer function of the plant.
So, special techniques are required to use a discrete-time
disturbance observer to estimate disturbances. Furthermore,
since the stability of the system is not guaranteed when the
disturbance estimate is incorporated directly into the designed
control law, the issue of the stability of the whole system must
be taken into account in the design of the low-pass filter, � ���.
So, the construction of � ��� may be complicated. In contrast,
one feature of the method described in this paper is that the
stability of the whole system is guaranteed when the estimate
is incorporated directly into the designed control law.
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Fig. 2. Configuration of proposed servo system.

In this paper, a low-order nonlinear disturbance-estimation
model called a curvature model is used to estimate distur-
bances and reduce the tracking error. The configuration of
the proposed servo system is shown in Fig. 2. It results
from plugging a nonlinear disturbance estimator, ��, into a
conventional servo system, and has a structure similar to that
of a two-degree-of-freedom servo system [11]. So roughly
speaking, the rejection of disturbances is mainly handled by
the controller ��, and the reference tracking is primarily
handled by the controller 
���.

A circle of curvature approximation approximates the curve
around the point ������ using an arc of the circle of curvature
at �� � ��� . Here, this method is employed to estimate a
disturbance. If the circle of curvature at �� � ��� is known,
then the value on this circle at �� can be considered to be an
estimate of the disturbance at �� (see Fig. 3). This estimate
has the following characteristics:

1) The circle of curvature shares the same tangent line with
the disturbance at �� � ��� .

2) The circle of curvature has the same concavity or
convexity as the disturbance at �� � ��� .

3) The curvature of the circle of curvature equals that of
the disturbance at �� � ��� .

So, the characteristics of the disturbance are reflected in the
estimate; and by utilizing the estimate, the disturbance can
effectively be suppressed. The details are given below.

According to Assumption 1, there exists a nonsingular
matrix # � ������ that converts the plant (1) into the
following controllability canonical form:�

��� �� 	 �� � ��� ��� ��� 	 ��� 
���� 	 
�����
���� � ��� ��� ����

(12)

where

��� � #����# �

�
��������� �����

�$� ��$� � � � � $�� �
�
�

��� � #���� �
�
��������� �

�	
� ��� � ��#�

Multiplying both sides of (12) by ��	

�
gives

��	

�
��� �� 	 �� � ���� ��� 	 ���� 	 
����

� ��
� �$� �$� � � � �$��

�
�
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Fig. 3. Circle-of-curvature model for disturbance estimation.

So, the disturbance, 
���, can be expressed as


��� � ��	

�
��� �� 	 ������� ���� ����

� ��	

��� �� 	 ��� ���� ���� ����� (13)

where
��	

� � �	

�#
�	#��� �� � �#���

As a result, the disturbance up to �� � ��� can be calculated
using the above equation, and the following equations hold:��
�

�� � �� � ��	

�
�� ���� ���� �� � ��� ��� � ���


�� � 
� � ��	

�
�� �� � ��� ���� �� � 
�� ��� � 
��


�� � �� � ��	

�
�� �� � 
�� ���� �� � ��� ��� � ���

(14)
For a sampling period, � , if the first and second derivatives of

��� at �� � ��� are approximated by

�

�

����� � 
������
���
�

�
�

�

��

����� � 
������

���
�	
�����

��
�

then the radius, �, of the circle of curvature is

�� �

	
� 	 �


�

�� � ���

�

�
���� � ���
� (15)

and the coordinates of the center are������
�����
$ � �� � ��� �

�

�

�� � ��
	
� 	 �


�

�� � ���



�
���� � ��
�

% � 
�� � �� 	
� 	 �


�

�� � ���

�
���� � ��
�

(16)

Thus, the disturbance estimate, �
���, is obtained from the
following lemma.

Lemma 1: The disturbance estimate, �
���, is given by

�
��� �

��
�
% ���� � ��� � $��� �


��

�� � ��  ��


�� � �� 	 � �

�

�� � ��� �

��

�� � �� � ��

% 	
�
�� � ��� � $��� �


��

�� � �� & ��

(17)

where �� $ and % are given by (15) and (16).
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IV. DISTURBANCE REJECTION

Combining the designed servo control law (9) with the
disturbance estimate (17) yields the control law

�� ��� � ����� �
���� (18)

The following theorem holds for this law.
Theorem 1: The control law (18) guarantees the stability

of the control system and suppresses disturbances when the
sampling period, � , is small enough.

In order to prove the above theorem, we first give the
discrete time version of the concept of globally uniformly
ultimately bounded (GUUB) [12], and then show that the
proposed control system is stable in the sense of GUUB.

Definition 1: The solution ���� of the system ��� 	 �� �
������� �� is said to be GUUB if there exists a positive
constant '� for a given positive constant ( such that

�������� 
 (� �� 	 '� 	 '
is satisfied regardless of the initial state, �����.

Proof: Assume that the internal model contained in 
���
is �"������, where ������ is defined in (3). According to
Assumption 3, there exists a positive number, 

� , such that

��������
������ � 

� &
� (19)

Since the designed servo system without disturbance estima-
tion is stable, there exists a positive number � & 
 such
that



 �����������

�������� ���






�

� ���������
������ � �

� � (20)

On the other hand, the Taylor expansion of 
�� � 
� at
�� � ��� is


�� � 
� � 
�� � ��� 
��� � ��� 	��
���

���

or equivalently



�

�� � �� � �

�

�� � �� 	��
����� (21)

In the same manner,



�

�� � 
� � �

�

�� � 
� 	��
����� (22)

And the Taylor expansion of 
 ��� � 
� at �� � ��� ,



�

�� � 
� � 

�

�� � ��� 
���� � ��� 	����
���

gives


��

�� � �� � �

��

�� � �� 	������ (23)

When �

��

�� � ��  �, the disturbance estimate is

�
��� � % ���� � ��� � $��
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�����	
�	 �


�

������

�
�������

�
�


����� ��������

���� ������
�
�
�	

��� �����
������������
���� �����
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�
�����	
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�

������

�
�������
��
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�
��
�
� ��� ����� ���� �����

����� ������
	

���� ������

	����� ������
�
�
�
�

�
�
�����	 �


�

������	 �
�
�
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�������	�
����
���

where the following relationship is used in the derivation:�
�� ) � �� �



)� �


 � �)
� � � � �


 � � � �)
� � � � � � �)� 
 ��

The condition �)� 
 � is guaranteed for a small � . Since the
Taylor expansion of 
��� at �� � ��� is


����
�����	

�

������	
�





��

�������	����
���

then

�
��� �� 
���� �
���

�
�


�

�� � ��� �

�

�� � ��
�
�

	
�




�


��

������ �

��

�����
�
��	�
����

���

From (21) and (23) we obtain

���
������ � ������ (24)

The above equation also holds for �

��

��� �� & � and �

��

���
�� � �. So, if a small enough � is chosen, then �
��� will
be bounded. In general, if the effects of a disturbance cannot
be ignored, then ��
������   �����. Therefore,

���
������ && ��
������ (25)

is satisfied, and�����������
���
����
�

�
����������

����
�
���
������

&&
����������

����
�
��
������ �

����������
���
����
�

holds. The above yields�����������
���
����
�
&& 

� � (26)

So, in the improved servo system in Fig. 2, the equivalent
disturbance added to the plant is �
���, which is much
smaller than the actual disturbance 
���. If we incorporate the
estimated disturbance into the servo control law, the following
holds:



 �����������

�������� ���






�

� � �����������
���
����
�
&& �

� �

(27)
So, 



 �����������

�������� ���





 
 �
�	 ��





 �����������
�������� ���






�

&&
�
�	 ���

�

(28)
holds for all � 	 �. It means that the control system is GUUB,
and thus stable; and the effects of a disturbance are suppressed
when the estimated disturbance is combined with the designed
servo control law.

Remark 2: The above theorem shows that, if the original
servo system is stable, the system is still stable after directly
plugging in the nonlinear disturbance estimator, ��. This result
can be viewed as a robustness property of the servo system,
i.e., the system is robust with regard to the incorporation of
the disturbance estimate.

Remark 3: If the servo control law �� ���, (18), which
incorporates the disturbance estimate, is applied to the plant,
the control input, ����, used in the calculation of disturbances
(14) should be replaced by �� ���.
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V. EXPERIMENTS

We applied the proposed method to the positioning control
of an arm robot (Fig. 4) to verify its validity. The arm was
driven by a Mabuchi DC motor (rated voltage: � �; rated
current: ���� �; rated speed: ��� ���"�). The block diagram of
the arm robot is shown in Fig. 5, where 
� is the voltage gain
of the motor driver; * 
�� is the resistance of the armature;
��

�
����

�
is the moment of inertia of the motor, the gear

box and the arm; + 
�� �"���� is the frictional damping con-
stant of the system; and 
	 
��"�� and 
� 
��"���� are
the torque constant and the back electromotive force constant,
respectively. The output of the plant is the rotational angle
,�-� 
����, and the inputs are the control voltage �� �-� 
��
and the disturbance voltage 
�-� 
��.

The plant in the continuous time domain is


��-�


-
�

�
� �
� �.

�
��-� 	

�
�
(

�

�� �-� 	 
�-���

��-� �
�
� �

�
��-��

��-� ��
�
,�-� 
,�-�"
-

�	
�

. �

	
� 	 +*

��*
� ���� �"����

( �

	
�

��*
� ����� ����

The rotational angle ,�-� is measured with an optical encoder,
and the rotational speed 
,�-�"
- is obtained by performing
a digital differential operation on the rotational angle. The
sampling period

� � ���� � (29)

is used to discretize the continuous plant; and the plant in the
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Fig. 6. Experimental system.
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discrete time domain is

�� �

�
� �����
�� ����

� ���  
�� ����

�
� �� �

�
�������� ����

�� ��� � ����

�
�

�� � 
 � � � �
(30)

A photograph of the experimental system is shown in Fig. 6.
A desktop computer (400-MHz Celeron) was used for control.
A motor driver, a counter, and two D/A converters were built
into the interface box, as shown in Fig. 7. A parallel connection
was used between the interface box and the computer. The
rotational speed was reduced by a gear box (64.8:1), and an
optical encoder (16 cycles per turn) was mounted on the shaft
of the motor to measure the angle of the arm. So, the resolution
of the arm movement is ���������� ���"��!�". Pulses from
the encoder were sent to the counter in the interface box. The
control input was fed to the motor through the interface box.

The reference input

���� � �#$
/

���
� (31)

is added. The internal model of the reference input is given
by

������ � � 	 ���
�� 	 ���� �� � ��������% (32)

and the matrices in the system equation of the servo controller
are

�� �

�
� �
�� �������

�
� �� �

�
�
�

�
� (33)

First, choosing

� � ��� � � ����� (34)
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and optimizing the following performance index

� ��

��
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yields the optimal servo control law
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The optimal servo control system is shown in Fig. 8.
The tracking control results when no disturbance was input

are shown in Fig. 9. The steady state tracking error is in the
range ����
� rad.

Next, the disturbance
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was input (Fig. 10). The experimental results for the optimal
system are shown in Fig. 11. Since no internal model of the
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Fig. 10. Disturbance.

disturbance is contained in the servo controller, the disturbance
cannot be rejected completely. In the steady state, the tracking
error increases to ���� 
 rad. The peak value of the power
spectral density of the tracking error is ��� �, which appears
at ���� rad/s, the angular frequency of the largest component
of the disturbance. Next, the disturbance was estimated using
the method proposed in this paper. The disturbance and the
corresponding estimate are shown in Fig. 12. It is clear
from the figure that the estimate reproduces the disturbance
satisfactorily. The experimental results for a control law that
makes use of the estimate are shown in Fig. 13. It can be seen
that the system remains stable, and the steady-state tracking
error drops to ����
� rad. The power spectral density of the
tracking error shows that the disturbance is almost completely
rejected, except at an angular frequency of ���� rad/s; and
even at that angular frequency, the peak value drops to ������,
which is less than one-sixteenth of that without the estimate. A
comparison of Figs. 11 and 13 reveals that making use of the
estimated disturbance significantly reduces the tracking error.

VI. CONCLUSIONS

To improve the disturbance rejection performance of a servo
system, this paper proposes a curvature model for disturbance
estimation, and an improved servo control law that makes use
of the estimate. Unlike other approaches, we do not assume
that any information about disturbances, such as the peak
value, is known. The main features of this method are:

1) Disturbances are reproduced satisfactorily even though
the estimation model is very simple.

2) The stability of the servo system is guaranteed when
the disturbance estimate is incorporated directly into the
designed servo control law, i.e., the system is robust.

The validity of the proposed method has been demonstrated
through experiments.
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estimation. (a) Time trace. (b) Power spectral density.
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