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Abstract— This paper concerns delay-dependent robust stabil- (the coefficient matrix of the delayed term) is decomposed

ity criteria and a design method for stabilizing neutral systems into two parts. One part is kept; and the other part is replaced
with time-varying structured uncertainties. A new way of deriv- t

ing such criteria is presented that combines the parameterized either with x(¢) — z(s)ds, which is in the derivative of

model transformation method with a method that takes the t—7 . .
relationships between the terms in the Leibniz-Newton formula the Lyapunov functional [6], or with the neutral transformation

into account. The relationships are expressed as free weighting [4]. However, in the former treatment [6], the weighting
matrices obtained by solving LMIs. Moreover, the stability matrices are fixed, as in [8], [9], [14]-[16]; and in both
criteria are also used to design a stabilizing state-feedback treatments, the method of decomposing the parameter matrix
controller. Numer_lcal examples illustrate the _ef_fectlveness of the [4], [6] needs more investigation. Han presented a method
method and the improvement over some existing methods. . . - .
of selecting the parameter matrix (Remark 7) in [6]; but
i s g o Ao e oo 3 SEYere esticion was imposed, namely tal e of te
stabilizi,ng controller, I)i/ﬁear r¥1atri§< inequality (LMi). matrices must be chosen to be the same, which may lead to
conservativeness.
This paper presents a new parameterized-matrix form ex-
. INTRODUCTION pressed in terms of the solution of a linear matrix inequality
TABILITY criteria for neutral systems can be classifiedLMI) [17]. This is combined with the free-weighting-matrix
into two types: delay-dependent, which include informamethod [10] to yield a new stability criterion for a neutral
tion on the size of delays, [1]-[10], and delay-independerystem with no uncertainties. The criterion is further extended
which are applicable to delays of arbitrary size [11]. Delayto a system with time-varying structured uncertainties. Based
independent stability criteria tend to be conservative, espsn this criterion, a method of designing a stabilizing state
cially for small delays, while delay-dependent ones are usuatbedback controller is derived.
less conservative.

The Lyapunov functional method is the main method em-
ployed to derive delay-dependent criteria. The discretized-
Lyapunov-functional method (e.g., [5], [12], [13]) is one of the Consider the following neutral systef, with time-varying
most efficient among them, but it is difficult to extend to thetructured uncertainties.
synthesis of a control system. Another method involves a fixed . )
model transformation, which expresses the delay term in ter B(t) = Ca(t —7) = (A + AA())z(t)
of an integral. Four basic model transformations have begﬁ : +(Aa + Ada(t)x(t —7) + Bu(t), t>0, (1)
proposed [9]. The descriptor model transformation method z(t) =0, t € [-7,0],
combined with Park’s or Moot al’s inequalities [14], [15] where z(t) € R" is the state vectoru(t) € R™ is the
is the most efficient [8], [9], [16]. But there is room for furthercontrol input;~ > 0 is a constant time delay; and, Ay, C

investigation. For example, in the derivative of the Lyapunoynd B are constant matrices with appropriate dimensions. The
functional, the Leibniz-Newton forrtnula was used, and the terghcertainties are of the form

II. NOTATION AND PRELIMINARIES

x(t — T) was replaced by (t) — #(s)ds in some places (AA() AAY(H)] = HF(H)[Ey Eod, @

but not in others. Moreover, the réIaTtionship between these two
terms was not considered. Recently, eteal. [10] devised a whereH, E, and E,q are appropriately dimensioned constant
new method that employs free weighting matrices to expregtrices, andF(¢) is an unknown real and possibly time-
the relationships between the terms in the Leibniz- Newtofarying matrix with Lebesgue-measurable elements satisfying
formula. This overcomes the conservativeness of methods
involving a fixed model transformation.

A different idea is the application of a parameterized modw
transformation with a parameter matrix. The delayed matrix

IE@I <1, vt, (3)

here|| - || is the Euclidean norm.

The problem is to find a state feedback galh,c R™*",
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First, the nominal systend,,, of X is discussed. It is given
by

(t) — Ci(t—7) = Azx(t) + Agz(t — 1)
+Bu(t), t >0,

2(t) =0, t € [-7,0].

EO . (5)

The following lemma is used to deal with a system with

time-varying uncertainties [10].
Lemma 1:Given matrices) = Q7, H, E, andR = RT >
0 with appropriate dimensions,

Q+HF)E+ETFT(t)HT <0

for all F(t) satisfying F7(t)F(t) < R, if and only if there
exists a scalar > 0 such that

Q+e 'HHT + cETRE < 0.

The operatoD: C([—7,0], R™) — R" is defined to be

Dxy = x(t) — Cx(t — 7).

Its stability is defined as follows [18]:

Definition 1: The operatorD is said to be stable if the
zero solution of the homogeneous difference equatian =
0, t>0, 2o =% € {¢p € C([-7,0] : Dp = 0} is uniformly
asymptotically stable.

IIl. STABILITY ISSUES

This section discusses the stabilityXf andX with u(t) =
0.

A. Asymptotic Stability

First, a delay-dependent stability criterion f&Y, is pre-
sented.

Theorem 1:Given a scalarr > 0, the nominal neutral
system,X, of 3 with u(t) = 0 is asymptotically stable if the
Pll P12
PL P > 0,
Q=QT">0,R=RT">0,Z=27">0,W=WT >0,
and any matricesV; andT; (i = 1,---,4) with appropriate
dimensions such that the following LMI holds.

operatorD is stable and there exigt =

(I>11 CI)12 q)13 (I)14
oL, Doy Doz Doy
P — ‘bis ‘1’% (I’%s 3y
1y 5 3y Dyy
TPQQ TPE; 7TP22 TPl,];C
7TN1T —TNQT 7TN;3T 7TNZ
TP22 —TN1
TP12 77'N2
_TP22 —TN3
—TCTP12 —TN4 < 07 (6)
—TW 0
0 —T77
where
Q11 = Pia+PL+Q+7W+ N+ N —T1 A— ATT{,

Oy =Py + NI +Th — ATTY,

Q13 = —Pjs — PLC + NI — Ny — Ty Aq — ATTY,
by =—-P11C+ NZ -TC — ATT4T,

Doy :R+TZ+T2+T2T7

o3 = —P11C — Ny — ToAg + T4,

oy = —ToC + TF,

P33 = —Q+PLCO+CTPio— N3 — NI —ATTT —T3A,,
O3y = CTPHC — NI —T3C — ALTY,

by =-R-T,C - CTT}.
Proof: Choose a Lyapunov functional candidate to be

Vixg) = (’Dxt)TPH(Dxt)+2(Dxt)TP12/tt x(s)ds

A o
+ [ T+ /:Taﬂs)m(s)ds

L
L

T

¢
Py / x(s)ds
t—1

s)dsdf

s)dsdo, @)

where P = Pl% Pry >0,Q=QT >0,R=RT >
Py Pr
0,Z=27>0,,andW = WT > 0 are to be determined. It

is easy to verify thal’(z;) satisfies the condition

a1|| Dz < V(ze) < allze?

cl»y
where [z le1 = sup_r<o<o{llz(t + 0)|.||i( + 0)[} and
ap = /\mzn(P)l Qg = )\max(P){1+HC||+T}+T{)\mam(Q)+
Amaz(R)} + %TQ{Amaw(Z) + Amaz (W)} !

From the Leibniz-Newton formula, the following equation
is true for any matricesV; (i =1,---,4).

2 [T (t) Ny +:tT(tt)N2+:vT(t — 7)N3+a7 (t—7)Ny] x

{x(t)—/t_T #(s)ds—xz(t — )| =0.
(8)

And from the system definition (5), the following equation is
also true for any matrice®; (i = 1,---,4).

2 [QTT(t)Tl —l—iJT(t)TQ —I—SCT(t — T)T3 -‘r.’i?T(t—T)Tzd X )
z2(t)—-Ca(t—7)— Ax(t)— Agz(t—7)] =0.
Calculating the derivative oV (z;) along the solution ot
yields

V(x) = 2[z(t) — Cx(t — T)]Tplz1€ [i(t) — Ci(t — 7)]
2li(t) — Ca(t— )] P | x(s)ds
2[a(t) = Calt — 1) Prafalt) - a(t - 7)]
12l (t) — 2(t — 7)]T Pas / 2(s)ds + 27 (£)Qx(t)
—aT(t = 7)Qu(t — 7) + &1 (£) Ri(t)
—;tTt(t —7)Ri(t — 1)+ mT i(t)

)z
/t_ i (s)Zi(s)ds + T (t)Wa(t)

1Some connections between the stability results for the ndrmis. and
Il - llex can be found in [19].
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t

_/ T(s)Wa(s)ds following LMI holds.
12 [z T( t)N1 42T () No+ 2T (t—7)Ny+iT (t—7) Ny x Uy Wy U3 Uiy TP
Lt Uiy Woa  Wag Doy TP1o
{x(t) - /tiT z(s)ds — x(t — 7)] U = \1@3 \p%) \1/313 Uay _71;22 <0,
+2 [ T()Ty +a7 t)Tz—i—x (t—7) T+ (t—7)T4] % Vig @y W @u o —7C P
z(t) — Ci(t — ) — Ax(t) — Agz(t — 7)] TPy TP —TPp —TPRC —TW 12)
t
( (t,s)®((t, s)ds where
(10) \1111:P12+P1,1;+Q+TW—T1A—ATT1T,
where ((t,s) = [2T(t) 2T(@) 2Tt — 7) Tt — Uiy =P+ T — ATTY,
7) 2T (s) 27 (s)]", and @ is defined in (6). If® < 0, then U3 =—Po— PLC —TyAqg— ATTY,
V(x) < —¢llz(t)|? for a sufficiently smallz > 0. SinceD Uy =-PC—TC—-ATT] Voy =R+ To + T4,

is stable,X is asymptotically stable if LMI (6) holds. m Uos = —P11C — ToAg + T7,
_ T T TT
In fact, P in Theorem 1 can be chosen to be semi-positive. Wss = _g +PRC+C Pl% _TAd I3 — T5Aq,
For example, selecting’;s = 0, P, = 0 and W = 0 yields V30 = CTPuC = T30 - Ay Ty,
the following criterion. Note that these values result in and®,, and ®,, are defined in Theorem 1.
different Lyapunov functional. Remark 2:Corollary 2 is, in fact, a parameterized model
Corollary 1: Given a scalarr > 0, the nominal neutral transformation. The parameter matrices are combined into the
system X, with u(t) = 0 is asymptotically stable if the Lyapunov matricesP;> and Py, in the Lyapunov functional,

operatorD is stable and there exis®;; = P}, > 0, Q = and are obtained by solving the LMI. From Corollaries 1
QT >0, R=RT >0, Z= 2T >0, and any matricesy; and 2, it is clear that Theorem 1 is a combination of the
andT; (i = 1,---,4) with appropriate dimensions such thafree- weighting-matrix method and a parameterized model
the following LMI holds. transformation.

B. Robust Stability

Eu 5P Hi3 Oy TNy
o7, Dyo Dog Doy —TNo Extending Theorem 1 to a neutral system with time-varying
E= =25 oL, Es3 ®34 —7N3 | <0, structured uncertainties yields the following delay-dependent
o7, o7, o7, Oy —TNy robust stability criterion.
—Nf —7Nf —NI —7NI —7Z Theorem 2:Given a scalarr > 0, the neutral systent
(11) with u(t) = 0 is robustly stable if the operatdP is stable
where and there existP = { ?Tl 11212 ] >0, Q = QT >0,
12 22
_ . P R=R">0,Z=27>0,W =W >0, and any matrices
En=Q+MN+N —ThA—- ATy, N; and T} (i = 1,---,4) with appropriate dimensions such
Ei3 =Ny — N - T4 - ATTY, that the following LMI holds.
Sg3=—Q — Ny — NI — ATTI — Ty A, ]
Iy, Do I3 Dy
o1, Doo Do3 Doy
and®,;; (i =1,---,4;i < j < 4) are defined in Theorem 1. H;g <I>§3 H%:s Dy
Remark 1:In the above theorem and corollary, the free 1y @2% 54 Pas
weighting matricesV; (i = 1,---,4) in (8) express the rela- Tha TP TPy —TPRC
¢ ’ ’ t —TNlT —TNQT —TN?)T —TN4T
tionships between the items(t), z(¢t — 7), and i(s)ds, | —HTT{ —-H'TS —-HTT{ —HTT{
and are obtained by solving the LMI. In fact, CtErToIIary 1 can 7P -1 -TiH
be derived directly by the free-weighting-matrix method [10]. TP —TNy —ThH
Thus, the matrice®;,, P»» and W in Theorem 1, which are _7522 —7Ns  —T3H
obtained by solving the LMI, provide extra freedom. —7C V[I;l? _TON4 _%H <0,
On the other hand, if we choos& =0 andN; =0 (i = 7(_) 7 0
1,---,4), another criterion can also be derived. 0 0 I
Corollary 2: Given a scalarr > 0, the nominal neutral i (13)
system >, with u(t) = 0 is asymptotically stable if the where
operatorD is stable and there exigt = ?71 ?2 >0, Iy = @11 + B By, iz = P13+ E] Bag,
12 522 I3 = P33 + B Foaq,

Q=QT">0,R=R" >0, W=WT >0, and any matrices
T; (i = 1,---,4) with appropriate dimensions such that thand®;; (i =1,---,4;7 < j <4) are defined in (6).
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Proof: ReplacingA and A, in (6) with A+ HF(t)E,
and A; + HF(t)E,q, respectively, we find that (6) foE is
equivalent to the following condition.

e+ TTFT. +TTFT ()T, <0, (14)

where

Uy =[-H'T{ —H'T{ —H'T] —H'T{ 0 0],
Fe=|E, 0 Eu,q 0 0 0].

By Lemma 1, a sufficient condition guaranteeing (14) is th&@s;; =

there exists a scalaxr > 0 such that

&+ \ITT, +27'TTT, < 0. (15)

That is,

AP+ N TYT, + 7T, < 0. (16)
ReplacingAP, \Q, \R,AZ, \W, AN; and\T; (i =1,---,4)
with P,Q,R,Z, W, N, andT; (i = 1,---,4), respectively,
and applying the Schur complement [17] shows tie®) (s
equivalent to (13). [ ]

where

O = Pu+PL+Q+7W + N, + NI —t,(AST + BYV)
—t,(SAT +vTBT),

012 Py + NI + 4,8 — t5(AST 4+ BV),

O13 = —Pp—PLCT+NI—N;—t;SAT —3(AST + BV),

O = —PuCT+ NI —,8CT —t4(AST + BV),

O = R47Z+1ty(S+57),

Oy3 = —P;CT — Ny —t,8AT + 387,

Oy = —t28CT + 1,57,

~Q+PLCT +OP1y— N3 — NI —t3(A487 +5AL),
O3y = CPCT — NI — 13507 —t,A457,
Ou4 —R —t,(SCT + CST).
Moreover, a stabilizing control law is given by(t) =
VS~Tx(t).
Proof: Applying the control law (4) ta%, yields
z(t) — Cz(t —7) = (A+ BK)z(t) + Agz(t — 7).  (18)

Since the solution afet|sI—(A+BK)—Aqe " —sCe™"%| =
0 is the same as that afet|s] — (A + BK)?T — ATe""* —

sCTe~7%| = 0, as long as stability is the only concern, (18)

is equivalent to the system

Remark 3: The criteria obtained in Corollaries 1 and 2 can %(t) — CTy(t — 7) = (A + BK) y(t) + ALy (t — 7). (19)
also be extended to a system with time-varying structurgﬂance’ replacingd, A, and C' in (6) with (A + BK)T, AT

uncertainties in the same manner.

IV. STATE FEEDBACK CONTROL

and C7, respectively, and settin@, = ¢,.5, Ty = 55,713 =
t38, Ty = t4S andV = K ST yields (17). SinceDqys in (17)
must be negative definite, the same is truetfdtS + S7). So,
S is nonsingular. Thusy(t) = V.S~ Tx(t). [ ]

Next, a stabilizing memoryless controller (4) fa is

The results in the previous section can also be used to verifgsigned as follows:

the stability of the closed-loop systeriig and>: with (4), and
to design a stabilizing state feedback controller (4).

The following theorem holds foE,.

Theorem 3:Given scalarg > 0 and¢; (i =1,---,4), the
control law (4) stabilizes the nominal neutral syst&mif the
Py P
Pl Py
Q=Q">0,R=R">0,Z2=2">0W=WwT >0,
and any matrice®V; (i = 1,---,4), S andV with appropriate
dimensions such that the following LMI holds.

operatorD is stable and there exigt = >0,

Theorem 4:Given scalarg > 0 and¢; (i =1,---,4), the
control law (4) stabilizes the nominal neutral syst&gif the
Py Pro

operatorD is stable and there exigt = e
Py Py

0,Q=Q"T >0,R=R" >0,Z=2">0W =
WT > 0, any matricesN; (i = 1,---,4), S and V with
appropriate dimensions, and scalass> 0 (i = 1,2) such
that the following LMI holds.

O11 O12 O13 O14
ef, O22 O23 O24
o— o3 0% O3s3 O34
S 03, CE Ou4
TPQQ ’T.Plg —TPQQ —TPl,J;CT
—rN{ —tN} —7NI  —7N{
TP22 77’N1
’TP12 —’TNQ
—TP22 —TN3
—TCP12 —TN4 < 07 (17)
—TW 0
0 —T17

[ ©11+ M HHT O12 O13 O14
@{2 O29 O23 O24
S 03 Os3+ A HH” O34
®1T4 @2T4 63T4 Oy
TP22 Tplg 77'P22 7TP£CT

—N{ —N¥ —rNT —N}F
t1E, ST toE, ST t3E,ST taE, ST
tlEadS t2EadST tBEadST t4EadST

TP22 —TNl tlSEaT tlSEfd T
TP12 —TNQ tQSEZ; tQSEZd
7TP22 7TN3 153SE’21 t;;SEaTd
7TCP12 77'N4 1545E‘21 t4SEgd <0
—W 0 0 0 ’
0 -7 0 0
0 0 1 0
0 0 0 Aol |

(20)
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where©;; (i =1,---,4;i < j <4) are defined in (17). More-  In addition, Table Il shows what effect the uncertainty
over, a stabilizing control law is given by(t) = V.S~Tz(t). bound,«, has onr as regards stability. The calculations are
based on Theorem 2 and Han’s method [4]. It can be seen that
Proof: ReplacingA and A, in (17) with A+ HF(t)E, 7 decreases as increases, as mentioned in [4], and that our
and A, + HF(t)E,q, respectively, we find that (17) fot is method yields a larger than Han's method.
equivalent to the following condition.

O + Q%jaF( )Qea + QT FT( )Qha
FALF(t)Aca +AT FT( JAna <0,

TABLE |
(21) MAXIMUM UPPER BOUND, 7, ON CONSTANT TIME DELAY FORa = 0
(NOMINAL SYSTEM).

where C 0 [ 01] 03] 05] 07 ] 09
= [ —HT 0 0 0 0 0 } Fridman's paper [9]| 4.47 | 3.49 | 2.06 | 1.14 | 0.54 | 0.13
Corollary 1 447 | 3.65| 232 | 1.31 | 0.57 | 0.10
= [t1E, ST t2BoST t3E.ST B, STT 0 0] Han's paper [4] | 4.35 | 433 | 4.10 | 3.62 | 2.73 | 0.99
Ah i=10 ~HT 0 0 0] Corollary 2 437 | 435 | 413 | 3.67 | 2.87 | 1.41
’ Theorem 1 447 | 435 | 413 | 3.67 | 2.87 | 1.41
Aea = [ta adST t2EqaST t3E.qST t1E.qST 0 0].
By Lemma 1, a sufficient condition guaranteeing (21) is that
there exist scalars; > 0 (i = 1, 2) such that TABLE Il
@+)\IQ£tha+/\;1QZaQea+A2A}7:dAhd+A;1AZdAed <0. MAXIMUM UPPER BOUND, 7, ON CONSTANT TIME-DELAY FOR @ = 0.2
(22) (UNCERTAIN SYSTEM).
Applying the Schur complement shows that (22) is equivalent c 0 T 005 01 T 0I5 T 02
to (20). ] Han's paper [4]| 1.77 | 1.63 | 1.48 | 1.33 | 1.16
Remark 4:The optimal values of the tuning parameters Theorem2 | 243 233 | 224 | 2.14 | 2.03
t; (i = 1,---,4) that were introduced in Theorems 3 and - c i 8-32 00-739 8-53; é)-?fl?
; an’s paper . . . .
4 can be found by the approach stated in Remark 5 of [16]. A Theorem 2 Lo 178 T Les T 150

numerical solution to this problem can be obtained by using
a numerical optimization algorithm, such fasinsearch in
the Optimization Toolbox ver. 2.2 of Matlab 6.5.

TABLE Il
V. NUMERICAL EXAMPLES EFFECT OF UNCERTAINTY BOUND &, ON 7 FORc = 0.1.
The following two examples demonstrate that the above a 0 [005] 01 [0I5[ 0.2 [ 0.25

methods are an improvement over some previous ones. The H"ﬁ‘hs paper2[4] j-gg g-gi g-gg g-ég ;-‘2‘2 2-;1
first concerns the asymptotic and robust stability of a neutral eorem : : ' ' ' '
system, and the second concerns the design of a state feedback

controller. Remark 5:In [5], Han and Yu employed the discretized-
Example 1:Consider the following uncertain neutral sys{yapunov-functional method to obtain less conservative re-
tem, 3. sults. However, their method is difficult to extend to the
Ao [ —2 0 } Ao [ ~1 0 ] synthesis of a controller.
|l 0o —09 |’ M7 -1 -1 | Example 2:Consider the uncertain systemwith
C— CO]’ 0<ec<l, oo | -2 -0.5
{00 - A‘{o 1}’Ad_[o —1}’
where AA(t) and AA,4(t) are unknown matrices satisfying C— 0 0 B_ 0
IAA®)] < o and [ AA4(1)]] < a. = [ ool
This system has the form of (2) withh = I and £, = H=1,E,=02I, E,q=al.

E,q = ol. This example was fully discussed in [4]. In ourc was chosen to be 0.2 in [15] and O in [16]. The maximum

method, all the free matrices are determined by solving thgper bound,r, for which the system is stabilized by state

corresponding LMls. feedback was found to be 0.4500 in the former and 0.5865
Table | lists the maximum upper bound, for « = 0. It in the latter & = 0 in [16]). For o = 0.2, Theorem 4 yields

is clear that the method in this paper produces significantty= 0.6548 whent; = 1,5 = 0.8,t3 = 0, andt, = 0; and

better results than [4] or [9], especially whenis large. It the corresponding state feedback gairkis= [-24.5739 —

can also be seen that the parameterized matrix transformatith5699]. Also, fora = 0, 7 = 0.9518 and K’ = [—24.8739 —

Corollary 2, is almost equivalent to Theorem 1; but that it0.8616] whent¢, = 1,t, = 1.2,¢3 =0, andty = 0.

becomes conservative when= 0. For system stabilization, our method yields a largehan
Table Il givesT for « = 0.2 and differentc¢'s. For previous ones, mainly because it combines the free-weighting-

comparison, the calculation results from [4] are also listethatrix method with a parameterized model transformation,

Clearly, Theorem 2 yields a largerfor any c. thus garnering the advantages of both.
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VI. CONCLUSION

In this study, instead of representing the delayed term
as an integral, free weighting matrices are used to express
the relationships between the terms in the Leibniz-Newton
formula. In order to use the parameterized-matrix method,
a new parameterized-matrix form is presented. These two
methods are combined to obtain a new stability criterion
for a nominal neutral system. The free weighting matrices
and the parameter matrix are easily determined by solving
an LMI. The criterion thus obtained is further extended to
a neutral system with time-varying structured uncertainties.
These stability criteria are employed to derive a stabilizing
state feedback controller.
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