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New Delay-Dependent Stability Criteria and
Stabilizing Method for Neutral Systems

Min Wu, Yong He, and Jin-Hua She,Member, IEEE,

Abstract— This paper concerns delay-dependent robust stabil-
ity criteria and a design method for stabilizing neutral systems
with time-varying structured uncertainties. A new way of deriv-
ing such criteria is presented that combines the parameterized
model transformation method with a method that takes the
relationships between the terms in the Leibniz-Newton formula
into account. The relationships are expressed as free weighting
matrices obtained by solving LMIs. Moreover, the stability
criteria are also used to design a stabilizing state-feedback
controller. Numerical examples illustrate the effectiveness of the
method and the improvement over some existing methods.

Index Terms— neutral system, time-varying structured uncer-
tainties, robust stability, delay-dependent criterion, state feedback
stabilizing controller, linear matrix inequality (LMI).

I. I NTRODUCTION

STABILITY criteria for neutral systems can be classified
into two types: delay-dependent, which include informa-

tion on the size of delays, [1]–[10], and delay-independent,
which are applicable to delays of arbitrary size [11]. Delay-
independent stability criteria tend to be conservative, espe-
cially for small delays, while delay-dependent ones are usually
less conservative.

The Lyapunov functional method is the main method em-
ployed to derive delay-dependent criteria. The discretized-
Lyapunov-functional method (e.g., [5], [12], [13]) is one of the
most efficient among them, but it is difficult to extend to the
synthesis of a control system. Another method involves a fixed
model transformation, which expresses the delay term in terms
of an integral. Four basic model transformations have been
proposed [9]. The descriptor model transformation method
combined with Park’s or Moonet al.’s inequalities [14], [15]
is the most efficient [8], [9], [16]. But there is room for further
investigation. For example, in the derivative of the Lyapunov
functional, the Leibniz-Newton formula was used, and the term

x(t− τ) was replaced byx(t)−
∫ t

t−τ

ẋ(s)ds in some places

but not in others. Moreover, the relationship between these two
terms was not considered. Recently, Heet al. [10] devised a
new method that employs free weighting matrices to express
the relationships between the terms in the Leibniz- Newton
formula. This overcomes the conservativeness of methods
involving a fixed model transformation.

A different idea is the application of a parameterized model
transformation with a parameter matrix. The delayed matrix
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(the coefficient matrix of the delayed term) is decomposed
into two parts. One part is kept; and the other part is replaced

either with x(t) −
∫ t

t−τ

ẋ(s)ds, which is in the derivative of

the Lyapunov functional [6], or with the neutral transformation
[4]. However, in the former treatment [6], the weighting
matrices are fixed, as in [8], [9], [14]–[16]; and in both
treatments, the method of decomposing the parameter matrix
[4], [6] needs more investigation. Han presented a method
of selecting the parameter matrix (Remark 7) in [6]; but
a severe restriction was imposed, namely, that three of the
matrices must be chosen to be the same, which may lead to
conservativeness.

This paper presents a new parameterized-matrix form ex-
pressed in terms of the solution of a linear matrix inequality
(LMI) [17]. This is combined with the free-weighting-matrix
method [10] to yield a new stability criterion for a neutral
system with no uncertainties. The criterion is further extended
to a system with time-varying structured uncertainties. Based
on this criterion, a method of designing a stabilizing state
feedback controller is derived.

II. N OTATION AND PRELIMINARIES

Consider the following neutral system,Σ, with time-varying
structured uncertainties.

Σ :





ẋ(t)− Cẋ(t− τ) = (A + ∆A(t))x(t)
+(Ad + ∆Ad(t))x(t− τ) + Bu(t), t > 0,

x(t) = 0, t ∈ [−τ, 0],
(1)

where x(t) ∈ Rn is the state vector;u(t) ∈ Rm is the
control input;τ ≥ 0 is a constant time delay; andA,Ad, C
andB are constant matrices with appropriate dimensions. The
uncertainties are of the form

[∆A(t) ∆Ad(t)] = HF (t)[Ea Ead], (2)

whereH,Ea andEad are appropriately dimensioned constant
matrices, andF (t) is an unknown real and possibly time-
varying matrix with Lebesgue-measurable elements satisfying

‖F (t)‖ ≤ 1, ∀t, (3)

where‖ · ‖ is the Euclidean norm.
The problem is to find a state feedback gain,K ∈ Rm×n,

in the control law

u(t) = Kx(t) (4)

that stabilizesΣ.
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First, the nominal system,Σ0, of Σ is discussed. It is given
by

Σ0 :





ẋ(t)− Cẋ(t− τ) = Ax(t) + Adx(t− τ)
+Bu(t), t > 0,

x(t) = 0, t ∈ [−τ, 0].
(5)

The following lemma is used to deal with a system with
time-varying uncertainties [10].

Lemma 1:Given matricesQ = QT ,H,E, andR = RT >
0 with appropriate dimensions,

Q + HF (t)E + ET FT (t)HT < 0

for all F (t) satisfyingFT (t)F (t) ≤ R, if and only if there
exists a scalarε > 0 such that

Q + ε−1HHT + εET RE < 0.

The operatorD: C([−τ, 0], Rn) → Rn is defined to be

Dxt = x(t)− Cx(t− τ).

Its stability is defined as follows [18]:
Definition 1: The operatorD is said to be stable if the

zero solution of the homogeneous difference equationDxt =
0, t ≥ 0, x0 = ψ ∈ {φ ∈ C([−τ, 0] : Dφ = 0} is uniformly
asymptotically stable.

III. STABILITY ISSUES

This section discusses the stability ofΣ0 andΣ with u(t) =
0.

A. Asymptotic Stability

First, a delay-dependent stability criterion forΣ0 is pre-
sented.

Theorem 1:Given a scalarτ ≥ 0, the nominal neutral
system,Σ0, of Σ with u(t) = 0 is asymptotically stable if the

operatorD is stable and there existP =
[

P11 P12

PT
12 P22

]
> 0,

Q = QT > 0, R = RT > 0, Z = ZT ≥ 0, W = WT ≥ 0,
and any matricesNi and Ti (i = 1, · · · , 4) with appropriate
dimensions such that the following LMI holds.

Φ =




Φ11 Φ12 Φ13 Φ14

ΦT
12 Φ22 Φ23 Φ24

ΦT
13 ΦT

23 Φ33 Φ34

ΦT
14 ΦT

24 ΦT
34 Φ44

τP22 τPT
12 −τP22 −τPT

12C
−τNT

1 −τNT
2 −τNT

3 −τNT
4

τP22 −τN1

τP12 −τN2

−τP22 −τN3

−τCT P12 −τN4

−τW 0
0 −τZ




< 0, (6)

where

Φ11 = P12 +PT
12 +Q+τW +N1 +NT

1 −T1A−AT TT
1 ,

Φ12 = P11 + NT
2 + T1 −AT TT

2 ,

Φ13 = −P12 − PT
12C + NT

3 −N1 − T1Ad −AT TT
3 ,

Φ14 = −P11C + NT
4 − T1C −AT TT

4 ,
Φ22 = R + τZ + T2 + TT

2 ,
Φ23 = −P11C −N2 − T2Ad + TT

3 ,
Φ24 = −T2C + TT

4 ,
Φ33 = −Q+PT

12C+CT P12−N3−NT
3 −AT

d TT
3 −T3Ad,

Φ34 = CT P11C −NT
4 − T3C −AT

d TT
4 ,

Φ44 = −R− T4C − CT TT
4 .

Proof: Choose a Lyapunov functional candidate to be

V (xt) := (Dxt)T P11(Dxt) + 2(Dxt)T P12

∫ t

t−τ

x(s)ds

+
[∫ t

t−τ

x(s)ds

]T

P22

∫ t

t−τ

x(s)ds

+
∫ t

t−τ

xT (s)Qx(s)ds +
∫ t

t−τ

ẋT (s)Rẋ(s)ds

+
∫ 0

−τ

∫ t

t+θ

ẋT (s)Zẋ(s)dsdθ

+
∫ 0

−τ

∫ t

t+θ

xT (s)Wx(s)dsdθ, (7)

whereP =
[

P11 P12

PT
12 P22

]
> 0, Q = QT > 0, R = RT >

0, Z = ZT ≥ 0, andW = WT ≥ 0 are to be determined. It
is easy to verify thatV (xt) satisfies the condition

α1‖Dxt‖2 ≤ V (xt) ≤ α2‖xt‖2c1,
where ‖xt‖c1 := sup−τ≤θ≤0{‖x(t + θ)‖, ‖ẋ(t + θ)‖} and
α1 = λmin(P ), α2 = λmax(P ){1+‖C‖+τ}+τ{λmax(Q)+
λmax(R)}+ 1

2τ2{λmax(Z) + λmax(W )} 1.
From the Leibniz-Newton formula, the following equation

is true for any matricesNi (i = 1, · · · , 4).

2
[
xT (t)N1+ẋT (t)N2+xT (t− τ)N3+ẋT (t−τ)N4

]×[
x(t)−

∫ t

t−τ

ẋ(s)ds−x(t− τ)
]
=0.

(8)
And from the system definition (5), the following equation is
also true for any matricesTi (i = 1, · · · , 4).

2
[
xT (t)T1+ẋT (t)T2+xT (t− τ)T3+ẋT (t−τ)T4

]×
· [ẋ(t)−Cẋ(t−τ)−Ax(t)−Adx(t−τ)]=0.

(9)

Calculating the derivative ofV (xt) along the solution ofΣ0

yields

V̇ (xt) = 2[x(t)− Cx(t− τ)]T P11 [ẋ(t)− Cẋ(t− τ)]

+2 [ẋ(t)− Cẋ(t− τ)]T P12

∫ t

t−τ

x(s)ds

+2[x(t)− Cx(t− τ)]T P12[x(t)− x(t− τ)]

+2[x(t)− x(t− τ)]T P22

∫ t

t−τ

x(s)ds + xT (t)Qx(t)

−xT (t− τ)Qx(t− τ) + ẋT (t)Rẋ(t)
−ẋT (t− τ)Rẋ(t− τ) + τ ẋT (t)Zẋ(t)

−
∫ t

t−τ

ẋT (s)Zẋ(s)ds + τxT (t)Wx(t)

1Some connections between the stability results for the norms‖ · ‖c and
‖ · ‖c1 can be found in [19].
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−
∫ t

t−τ

xT (s)Wx(s)ds

+2
[
xT (t)N1+ẋT (t)N2+xT (t−τ)N3+ẋT (t−τ)N4

]×[
x(t)−

∫ t

t−τ

ẋ(s)ds− x(t− τ)
]

+2
[
xT (t)T1+ẋT (t)T2+xT (t−τ)T3+ẋT (t−τ)T4

]×
[ẋ(t)− Cẋ(t− τ)−Ax(t)−Adx(t− τ)]

:=
1
τ

∫ t

t−τ

ζT (t, s)Φζ(t, s)ds,

(10)
where ζ(t, s) = [xT (t) ẋT (t) xT (t − τ) ẋT (t −
τ) xT (s) ẋT (s)]T , and Φ is defined in (6). IfΦ < 0, then
V̇ (xt) ≤ −ε‖x(t)‖2 for a sufficiently smallε > 0. SinceD
is stable,Σ is asymptotically stable if LMI (6) holds.

In fact, P in Theorem 1 can be chosen to be semi-positive.
For example, selectingP12 = 0, P22 = 0 and W = 0 yields
the following criterion. Note that these values result in a
different Lyapunov functional.

Corollary 1: Given a scalarτ ≥ 0, the nominal neutral
system Σ0 with u(t) = 0 is asymptotically stable if the
operatorD is stable and there existP11 = PT

11 > 0, Q =
QT > 0, R = RT > 0, Z = ZT ≥ 0, and any matricesNi

and Ti (i = 1, · · · , 4) with appropriate dimensions such that
the following LMI holds.

Ξ =




Ξ11 Φ12 Ξ13 Φ14 −τN1

ΦT
12 Φ22 Φ23 Φ24 −τN2

ΞT
13 ΦT

23 Ξ33 Φ34 −τN3

ΦT
14 ΦT

24 ΦT
34 Φ44 −τN4

−τNT
1 −τNT

2 −τNT
3 −τNT

4 −τZ




< 0,

(11)
where

Ξ11 = Q + N1 + NT
1 − T1A−AT TT

1 ,
Ξ13 = NT

3 −N1 − T1Ad −AT TT
3 ,

Ξ33 = −Q−N3 −NT
3 −AT

d TT
3 − T3Ad,

andΦij (i = 1, · · · , 4; i ≤ j ≤ 4) are defined in Theorem 1.

Remark 1: In the above theorem and corollary, the free
weighting matricesNi (i = 1, · · · , 4) in (8) express the rela-

tionships between the itemsx(t), x(t− τ), and
∫ t

t−τ

ẋ(s)ds,

and are obtained by solving the LMI. In fact, Corollary 1 can
be derived directly by the free-weighting-matrix method [10].
Thus, the matricesP12, P22 andW in Theorem 1, which are
obtained by solving the LMI, provide extra freedom.

On the other hand, if we chooseZ = 0 and Ni = 0 (i =
1, · · · , 4), another criterion can also be derived.

Corollary 2: Given a scalarτ ≥ 0, the nominal neutral
system Σ0 with u(t) = 0 is asymptotically stable if the

operatorD is stable and there existP =
[

P11 P12

PT
12 P22

]
> 0,

Q = QT > 0, R = RT > 0, W = WT ≥ 0, and any matrices
Ti (i = 1, · · · , 4) with appropriate dimensions such that the

following LMI holds.

Ψ =




Ψ11 Ψ12 Ψ13 Ψ14 τP22

ΨT
12 Ψ22 Ψ23 Φ24 τP12

ΨT
13 ΨT

23 Ψ33 Ψ34 −τP22

ΨT
14 ΦT

24 ΨT
34 Φ44 −τCT P12

τP22 τPT
12 −τP22 −τPT

12C −τW




< 0,

(12)
where

Ψ11 = P12 + PT
12 + Q + τW − T1A−AT TT

1 ,
Ψ12 = P11 + T1 −AT TT

2 ,
Ψ13 = −P12 − PT

12C − T1Ad −AT TT
3 ,

Ψ14 = −P11C − T1C −AT TT
4 ,Ψ22 = R + T2 + TT

2 ,
Ψ23 = −P11C − T2Ad + TT

3 ,
Ψ33 = −Q + PT

12C + CT P12 −AT
d TT

3 − T3Ad,
Ψ34 = CT P11C − T3C −AT

d TT
4 ,

andΦ24 andΦ44 are defined in Theorem 1.
Remark 2:Corollary 2 is, in fact, a parameterized model

transformation. The parameter matrices are combined into the
Lyapunov matrices,P12 andP22, in the Lyapunov functional,
and are obtained by solving the LMI. From Corollaries 1
and 2, it is clear that Theorem 1 is a combination of the
free- weighting-matrix method and a parameterized model
transformation.

B. Robust Stability

Extending Theorem 1 to a neutral system with time-varying
structured uncertainties yields the following delay-dependent
robust stability criterion.

Theorem 2:Given a scalarτ ≥ 0, the neutral systemΣ
with u(t) = 0 is robustly stable if the operatorD is stable

and there existP =
[

P11 P12

PT
12 P22

]
> 0, Q = QT > 0,

R = RT > 0, Z = ZT ≥ 0, W = WT ≥ 0, and any matrices
Ni and Ti (i = 1, · · · , 4) with appropriate dimensions such
that the following LMI holds.

Π =




Π11 Φ12 Π13 Φ14

ΦT
12 Φ22 Φ23 Φ24

ΠT
13 ΦT

23 Π33 Φ34

ΦT
14 ΦT

24 ΦT
34 Φ44

τP22 τPT
12 −τP22 −τPT

12C
−τNT

1 −τNT
2 −τNT

3 −τNT
4

−HT TT
1 −HT TT

2 −HT TT
3 −HT TT

4

τP22 −τN1 −T1H
τP12 −τN2 −T2H
−τP22 −τN3 −T3H

−τCT P12 −τN4 −T4H
−τW 0 0

0 −τZ 0
0 0 −I




< 0,

(13)
where

Π11 = Φ11 + ET
a Ea, Π13 = Φ13 + ET

a Ead,
Π33 = Φ33 + ET

adEad,

andΦij (i = 1, · · · , 4; i ≤ j ≤ 4) are defined in (6).
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Proof: ReplacingA and Ad in (6) with A + HF (t)Ea

and Ad + HF (t)Ead, respectively, we find that (6) forΣ is
equivalent to the following condition.

Φ + ΓT
h F (t)Γe + ΓT

e FT (t)Γh < 0, (14)

where

Γh =
[−HT TT

1 −HT TT
2 −HT TT

3 −HT TT
4 0 0

]
,

Γe =
[

Ea 0 Ead 0 0 0
]
.

By Lemma 1, a sufficient condition guaranteeing (14) is that
there exists a scalarλ > 0 such that

Φ + λΓT
h Γh + λ−1ΓT

e Γe < 0. (15)

That is,

λΦ + λ2ΓT
h Γh + ΓT

e Γe < 0. (16)

ReplacingλP, λQ, λR, λZ, λW , λNi andλTi (i = 1, · · · , 4)
with P, Q,R, Z,W , Ni and Ti (i = 1, · · · , 4), respectively,
and applying the Schur complement [17] shows that (??) is
equivalent to (13).

Remark 3:The criteria obtained in Corollaries 1 and 2 can
also be extended to a system with time-varying structured
uncertainties in the same manner.

IV. STATE FEEDBACK CONTROL

The results in the previous section can also be used to verify
the stability of the closed-loop systemsΣ0 andΣ with (4), and
to design a stabilizing state feedback controller (4).

The following theorem holds forΣ0.
Theorem 3:Given scalarsτ ≥ 0 and ti (i = 1, · · · , 4), the

control law (4) stabilizes the nominal neutral systemΣ0 if the

operatorD is stable and there existP =
[

P11 P12

PT
12 P22

]
> 0,

Q = QT > 0, R = RT > 0, Z = ZT ≥ 0, W = WT ≥ 0,
and any matricesNi (i = 1, · · · , 4), S andV with appropriate
dimensions such that the following LMI holds.

Θ =




Θ11 Θ12 Θ13 Θ14

ΘT
12 Θ22 Θ23 Θ24

ΘT
13 ΘT

23 Θ33 Θ34

ΘT
14 ΘT

24 ΘT
34 Θ44

τP22 τPT
12 −τP22 −τPT

12C
T

−τNT
1 −τNT

2 −τNT
3 −τNT

4

τP22 −τN1

τP12 −τN2

−τP22 −τN3

−τCP12 −τN4

−τW 0
0 −τZ




< 0, (17)

where

Θ11 = P12 + PT
12 + Q + τW + N1 + NT

1 − t1(AST + BV )
−t1(SAT + V T BT ),

Θ12 = P11 + NT
2 + t1S − t2(AST + BV ),

Θ13 = −P12−PT
12C

T +NT
3 −N1−t1SAT

d −t3(AST + BV ),
Θ14 = −P11C

T + NT
4 − t1SCT − t4(AST + BV ),

Θ22 = R + τZ + t2(S + ST ),
Θ23 = −P11C

T −N2 − t2SAT
d + t3S

T ,

Θ24 = −t2SCT + t4S
T ,

Θ33 = −Q+PT
12C

T +CP12−N3−NT
3 −t3(AdS

T +SAT
d ),

Θ34 = CP11C
T −NT

4 − t3SCT − t4AdS
T ,

Θ44 = −R− t4(SCT + CST ).

Moreover, a stabilizing control law is given byu(t) =
V S−T x(t).

Proof: Applying the control law (4) toΣ0 yields

ẋ(t)− Cẋ(t− τ) = (A + BK)x(t) + Adx(t− τ). (18)

Since the solution ofdet|sI−(A+BK)−Ade
−τs−sCe−τs| =

0 is the same as that ofdet|sI − (A + BK)T − AT
d e−τs −

sCT e−τs| = 0, as long as stability is the only concern, (18)
is equivalent to the system

ẏ(t)− CT ẏ(t− τ) = (A + BK)T y(t) + AT
d y(t− τ). (19)

Hence, replacingA,Ad and C in (6) with (A + BK)T , AT
d

and CT , respectively, and settingT1 = t1S, T2 = t2S, T3 =
t3S, T4 = t4S andV = KST yields (17). SinceΘ22 in (17)
must be negative definite, the same is true fort2(S +ST ). So,
S is nonsingular. Thus,u(t) = V S−T x(t).

Next, a stabilizing memoryless controller (4) forΣ is
designed as follows:

Theorem 4:Given scalarsτ ≥ 0 and ti (i = 1, · · · , 4), the
control law (4) stabilizes the nominal neutral systemΣ0 if the

operatorD is stable and there existP =
[

P11 P12

PT
12 P22

]
>

0, Q = QT > 0, R = RT > 0, Z = ZT ≥ 0, W =
WT ≥ 0, any matricesNi (i = 1, · · · , 4), S and V with
appropriate dimensions, and scalarsλi > 0 (i = 1, 2) such
that the following LMI holds.


Θ11+λ1HHT Θ12 Θ13 Θ14

ΘT
12 Θ22 Θ23 Θ24

ΘT
13 ΘT

23 Θ33+λ2HHT Θ34

ΘT
14 ΘT

24 ΘT
34 Θ44

τP22 τPT
12 −τP22 −τPT

12C
T

−τNT
1 −τNT

2 −τNT
3 −τNT

4

t1EaST t2EaST t3EaST t4EaST

t1EadS
T t2EadS

T t3EadS
T t4EadS

T

τP22 −τN1 t1SET
a t1SET

ad

τP12 −τN2 t2SET
a t2SET

ad

−τP22 −τN3 t3SET
a t3SET

ad

−τCP12 −τN4 t4SET
a t4SET

ad

−τW 0 0 0
0 −τZ 0 0
0 0 −λ1I 0
0 0 0 −λ2I




<0,

(20)
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whereΘij (i = 1, · · · , 4; i ≤ j ≤ 4) are defined in (17). More-
over, a stabilizing control law is given byu(t) = V S−T x(t).

Proof: ReplacingA andAd in (17) with A + HF (t)Ea

andAd + HF (t)Ead, respectively, we find that (17) forΣ is
equivalent to the following condition.

Θ + ΩT
haF (t)Ωea + ΩT

eaFT (t)Ωha

+ΛT
hdF (t)Λed + ΛT

edF
T (t)Λhd < 0,

(21)

where

Ωha =
[ −HT 0 0 0 0 0

]
,

Ωea =
[
t1EaST t2EaST t3EaST t4EaSTT 0 0

]
,

Λhd =
[

0 0 −HT 0 0 0
]
,

Λed =
[
t1EadS

T t2EadS
T t3EadS

T t4EadS
T 0 0

]
.

By Lemma 1, a sufficient condition guaranteeing (21) is that
there exist scalarsλi > 0 (i = 1, 2) such that

Θ+λ1ΩT
haΩha+λ−1

1 ΩT
eaΩea+λ2ΛT

hdΛhd+λ−1
2 ΛT

edΛed <0.
(22)

Applying the Schur complement shows that (22) is equivalent
to (20).

Remark 4:The optimal values of the tuning parameters
ti (i = 1, · · · , 4) that were introduced in Theorems 3 and
4 can be found by the approach stated in Remark 5 of [16]. A
numerical solution to this problem can be obtained by using
a numerical optimization algorithm, such asfminsearch in
the Optimization Toolbox ver. 2.2 of Matlab 6.5.

V. NUMERICAL EXAMPLES

The following two examples demonstrate that the above
methods are an improvement over some previous ones. The
first concerns the asymptotic and robust stability of a neutral
system, and the second concerns the design of a state feedback
controller.

Example 1:Consider the following uncertain neutral sys-
tem, Σ.

A =
[ −2 0

0 −0.9

]
, Ad =

[ −1 0
−1 −1

]
,

C =
[

c 0
0 c

]
, 0 ≤ c < 1,

where ∆A(t) and ∆Ad(t) are unknown matrices satisfying
‖∆A(t)‖ ≤ α and‖∆Ad(t)‖ ≤ α.

This system has the form of (2) withH = I and Ea =
Ead = αI. This example was fully discussed in [4]. In our
method, all the free matrices are determined by solving the
corresponding LMIs.

Table I lists the maximum upper bound,τ , for α = 0. It
is clear that the method in this paper produces significantly
better results than [4] or [9], especially whenc is large. It
can also be seen that the parameterized matrix transformation,
Corollary 2, is almost equivalent to Theorem 1; but that it
becomes conservative whenc = 0.

Table II gives τ for α = 0.2 and different c’s. For
comparison, the calculation results from [4] are also listed.
Clearly, Theorem 2 yields a largerτ for any c.

In addition, Table III shows what effect the uncertainty
bound,α, has onτ as regards stability. The calculations are
based on Theorem 2 and Han’s method [4]. It can be seen that
τ decreases asα increases, as mentioned in [4], and that our
method yields a largerτ than Han’s method.

TABLE I

MAXIMUM UPPER BOUND, τ , ON CONSTANT TIME DELAY FORα = 0

(NOMINAL SYSTEM).

c 0 0.1 0.3 0.5 0.7 0.9
Fridman’s paper [9] 4.47 3.49 2.06 1.14 0.54 0.13

Corollary 1 4.47 3.65 2.32 1.31 0.57 0.10
Han’s paper [4] 4.35 4.33 4.10 3.62 2.73 0.99

Corollary 2 4.37 4.35 4.13 3.67 2.87 1.41
Theorem 1 4.47 4.35 4.13 3.67 2.87 1.41

TABLE II

MAXIMUM UPPER BOUND, τ , ON CONSTANT TIME-DELAY FOR α = 0.2

(UNCERTAIN SYSTEM).

c 0 0.05 0.1 0.15 0.2
Han’s paper [4] 1.77 1.63 1.48 1.33 1.16

Theorem 2 2.43 2.33 2.24 2.14 2.03

c 0.25 0.3 0.35 0.4
Han’s paper [4] 0.98 0.79 0.59 0.37

Theorem 2 1.91 1.78 1.65 1.50

TABLE III

EFFECT OF UNCERTAINTY BOUND, α, ON τ FOR c = 0.1.

α 0 0.05 0.1 0.15 0.2 0.25
Han’s paper [4] 4.33 3.61 2.90 2.19 1.48 0.77

Theorem 2 4.35 3.64 3.06 2.60 2.24 1.94

Remark 5: In [5], Han and Yu employed the discretized-
Lyapunov-functional method to obtain less conservative re-
sults. However, their method is difficult to extend to the
synthesis of a controller.

Example 2:Consider the uncertain systemΣ with

A =
[

0 0
0 1

]
, Ad =

[ −2 −0.5
0 −1

]
,

C =
[

0 0
0 0

]
, B =

[
0
1

]
,

H = I, Ea = 0.2I, Ead = αI.
α was chosen to be 0.2 in [15] and 0 in [16]. The maximum
upper bound,τ , for which the system is stabilized by state
feedback was found to be 0.4500 in the former and 0.5865
in the latter (α = 0 in [16]). For α = 0.2, Theorem 4 yields
τ = 0.6548 when t1 = 1, t2 = 0.8, t3 = 0, and t4 = 0; and
the corresponding state feedback gain isK = [−24.5739 −
17.6699]. Also, forα = 0, τ = 0.9518 andK = [−24.8739 −
10.8616] when t1 = 1, t2 = 1.2, t3 = 0, andt4 = 0.

For system stabilization, our method yields a largerτ than
previous ones, mainly because it combines the free-weighting-
matrix method with a parameterized model transformation,
thus garnering the advantages of both.
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VI. CONCLUSION

In this study, instead of representing the delayed term
as an integral, free weighting matrices are used to express
the relationships between the terms in the Leibniz-Newton
formula. In order to use the parameterized-matrix method,
a new parameterized-matrix form is presented. These two
methods are combined to obtain a new stability criterion
for a nominal neutral system. The free weighting matrices
and the parameter matrix are easily determined by solving
an LMI. The criterion thus obtained is further extended to
a neutral system with time-varying structured uncertainties.
These stability criteria are employed to derive a stabilizing
state feedback controller.
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