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Abstract—This paper concerns the problem of the robust sta- tor model transform and obtained more efficient criteria for
bility of a linear system with a time-varying delay and polytopic-  systems with polytopic-type uncertainties. Even though these
type uncertainties. In order to construct a parameter-dependent efforts have produced great progress, some issues remain that

Lyapunov functional for the system, we first devised a new . iderati To ai le. in the derivati
method of dealing with a time-delay system without uncertainties. require reconsidaeration. 10 give an exampie, in the derivative

In this method, the derivative terms of the state, which is in the Of the Lyapunov functional, they used the Leitbniz-NeWton

derivative of the Lyapunov functional, are retained and some free . .
weighting matrices are used to express the relationships among formula and replaced the teraft —7) with x(t)_/ #(s)ds

. . . . t—T1
the system variables, and among the terms in the Leibniz-Newton jn some places, but retained it in other places in order to make

formula. As a result, the Lyapunov matrices are not |n\_/olv_ed i the calculations easier. More specifically, in [19]¢ — 7) is
any product terms of the system matrices in the derivative of t

the Lyapunov functional. This method is then easily extended to replaced byz(t) — / i(s)ds in the term2z7 (t)PA,2(t),
a system with polytopic-type uncertainties. Numerical examples

t—T1
demonstrate the validity of the proposed criteria. but not in the termri®(¢)Zi(t). Since bothz(t — 7) and
t

Index Terms—time-varying delay, robust_ stability, parameter- x(t) — i(s)ds affect the results, there must be a relation-
dependent Lyapunov functional, polytopic-type uncertainties, —r
linear matrix inequality (LMI). ship between them; but this point was not considered.

This paper presents some simple delay-dependent stability
. INTRODUCTION criteria for linear systems with a time-varying delay. First,

IME-DELAY systems are frequently encountered in varie deal with a sy;tem with a tlme—va}rylng delay that h'as
. . . : . fixed system matrices. (System matrices are the matrices
ous areas, including engineering, biology, and economics

) : . o IN the dynamic equation of the system.) In the derivative
(see [1]). A time delay is often a source of instability an : . ! .
i . of the Lyapunov functional, the terni(¢) is retained, but
oscillations in a system. In the past few years, the robtﬁaa

t " : . o
stability of uncertain systems with time delays has receive e relationship among the terms in the system equation is

. . extg)ressed by some free weighting matrices. In consequence,
considerable attention; and many papers have focused : : . :
the Lyapunov matrices, which are the matrices in the Lyapunov

time-delay systems with polytopic-type uncertainties. Receﬁ'mctional are not involved in any product terms with the

gfforts ha_ve shown thataparameter-depende_nt Lyapunov futggétem matrices. Moreover, the relationship betwegt),
tion/functional can overcome the conservatism of quadrafi t

stability conditions (see [2]-[10]). On the other hand, current(t — d(t)) and %(s)ds is expressed in terms of free

i I Jt—d(t) .
efforts to achieve robust stability in time-delay systems C"”’\1/\r11e|ght|ng matrices. 'f'h|s treatment avoids difficulties in the

be divided into two categories (e.g., [11]), namely delay-_~ . !
g S o 15 o e o s rciona T et e s
ria (see [7]-[10], [13]-[24]). It is well known that delay- ’ P y

. 1 . . numerically. Then, this idea is extended to a time-varying-
independent criteria tend to be conservative, especially wh av svstem with polvtopic-tvpe uncertainties. and a less con-
the size of a delay is small. Recently, Park [18] presenteg y sy polytopic-typ '

an improved version of the standard bounding method asgrvatwe criterion is obtained. On the other hand, it is shown

. o . ; at the new criterion includes the delay-independent/rate-
obtained some delay-dependent criteria for linear time-del :
: pendent, delay-dependent/rate-independent, and delay- and
systems that were better than previous results. Mebl.

[19] extended Park’s idea to a more general form for uncertariate—independent criteria as special cases. Numerical examples
Row that the results obtained in this paper are effective and

systems with time-invariant delays. Fridman and Shaked [8 fe an improvement over existing criteria
[10] combined Park’s and Moon'’s inequalities with a descrip- P g '

Y. He and M. Wu are with the School of Information Science and

Engineering, Central South University, Changsha 410083, China. Il. STABILITY ISSUES
J.-H. She is with the School of Bionics, Tokyo University of Technology,
Tokyo, 192-0982 Japan. Consider a linear system with a time-varying delay

G.-P. Liu is with the School of Mechanical, Materials, Manufacturing
Engineering and Management, University of Nottingham, Nottingham, NG7 .
2K . 0 Y J v 5 { i(t) = Az(t) + Bx(t — d(t)), t > 0,

I(t) = ¢(t)7 te [77'7 O]a

2RD, UK, and is also with the Institute of Automation, Chinese Academy of
Sciences, Beijing 100080, China.

)



JOURNAL OF BTEX CLASS FILES, VOL. 1, NO. 8, AUGUST 2002 2

wherex(t) € R™ is the state vector. The matricélsand B are along the solution of Systersi yields
subject to uncertainties and satisfy the real convex polytopic V(xt) — 22 T(#) Pi(t)

mode T ()Qa(t) — (1~ d()a (0 — d()Qe(t — d(1)
) ) +raT () Zi(t) — /ti iT(s)Zi(s)ds
Q= {[A(S) BE)I=Y &[A; Bjl, Y &=1,&>0, < 227 () Pi(t)
j=1 i=1 ) +27 (1) Qz(t) — (1 - pat (t—dt)Qx(t — d(t))

where A;,B; (j = 1,---,p) are constant matrices with +r;tT(t)Zi(t)*/ " (s)Zi(s)ds.
appropriate dimensions ang; (j = 1,---,p) are time- t—d(t) @)

invariant uncertainties. The time delayt) is a time-varying The Leibniz-Newton formula provides
continuous function that satisfies

[A B] € Q,

t

2(t) — 2(t — d(t)) — / #(s)ds = 0. ®)

0 <d(t) <, 3) t—d(t)
q So, it is clear that, for appropriately dimensioned matrices
an ) N; (i =1,2,3), the following is true:
dit) s <1, @ TN T (¢ — d(t)Na+iT (1) Ns] *
where 7 and ;. are constants and the initial conditias(t) 2(t) — 2(t — d(t)) — /t i(s)ds| = 0. 9)
denotes a continuous vector-valued initial function tofe t—d(t)
[—T7,0].

Moreover, according to Eq. (1), for appropriately dimensioned
matricesT; (i = 1,2,3), we have

A. Delay-dependent Asymptotic Stability 2 [2T() Ty + 2T (¢t — d(t))To + &7 (¢) T3] *

) N ) [#(t) — Az(t) — Bz(t — d(t))] = 0.

In order to discuss the stability of Systemy which has ] - o
polytopic-type uncertainties (2), first, we consider the case §_the other hand, for a semi-positive definite matkix=
which the matricesA and B are fixed, i.e., the system has no lel f{u §13 > 0. the following hold
uncertainties. For this case, the following lemma holds. 7 X2T2 X23 = U, (e Toflowing holds.
Lemma 1:For given scalarss > 0 and ;. < 1, System 13 423 433
Y. with fixed matricesA and B and a time-varying delay T t T
satisfying (3) and (4) is asymptotically stable if there exist T (1) Xn(t) _/ ! () Xn(t)ds = 0, 1)
P=PT>0,Q=0QT >0, Z= 27 > 0 and appropriately )
dimensioned matriced; and T} (i = 1,2,3) such that the Where . . e
following LMI holds: n(t) = [z (t) @ (t—d(t) & @) .

Then, adding the terms on the left of Egs. (9)-(12)V80r,)
allows us to expres¥ (z;) as

(10)

'y The Tz 7N
F’{Q FQQ F23 TNQ

= <0 (5) t
r{; T3; Ts3 7N3 ’ : T = / T
< = — v 12
TNlT 7_]\/*QT TN:;T 77 V(mt) =7 (t) n(t) f—d(t)c (t75> C(t,S)d& ( )
where where
Iy = Q + Ny + NlT _ ATTlT _ TlA, C(tvs) = [nT(t)’ jjT(s)]Ta
[y =NJ — N, — ATT{ — T\ B, Iy +7X T+ 77X Tig+7X53
F13:P+Ng+T1—ATTg, == F{2+TX1TQ F22+7'X22 F23+TX23 s
F22:7(1*ﬂ)Q*NQ*Ng*TzB*BTT2T, F{B"FTXE; F53+7X27;, sz + 7X33
Las *NBT+T2 7BTT3T’ X1 X2 Xz M
F33 =77 + T5 + T;::‘F XT X22 X23 N2
Proof: Choose a Lyapunov functional candidate to be U= X1T2 XI  Xss Na (13)
13 23
¢ N NI NI Zz
Viz = J;TtPact—I—/ 2T (s)Qx(s)ds .
() (t)Pa() t—d(t) (5)Qe(s) ©) If 2 < 0and¥ > 0, thenV(z;) < —elx(t)]? for a
ot () dsd sufficiently smalle, which ensures the asymptotic stability
+ . t+9x (5)Z(s)dsdo, of SystemX [26]. Specifically, if we select & > 0 then
N, N 17
where matrices® = PT >0,Q=Q7 >0andZ =27 >0 an X can be chosento b& = | N, | Z71| N,

need to be determined. Calculating the derivativeldfr,) N3 N3
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This ensures thaX > 0 and ¥ > 0. In this case= < 0 delay-dependent robust stability condition for Systemvith

is equivalent tol' < 0, according to the Schur complemenpolytopic-type uncertainties as follows:

[25]. ] Theorem 1:For given scalars > 0 andu < 1, SystemX:
Remark 1:1t is clear from the proof of Lemma 1 that thewith polytopic-type uncertainties (2) and a time-varying delay

free weighting matriced; (i = 1,2,3) in Eq. (10) are used satisfying (3) and (4) is robustly stable if there exi3t =

to express the relationship between the terft) and terms P >0, Q; = QT >0andZ; = Z] >0 (j = 1,---,p),

z(t) and z(t — d(t)). The zero term2[zT ()71 + 2T(t — and appropriately dimensioned matric¥s; (i = 1,2,3; j =

d(t) Ty + 2T (t)T3] [#(t) — Ax(t) — Bz(t — d(t))] is inserted 1,---,p) andT; (i = 1,2,3) such that the following LMIs

into the derivative of the Lyapunov functional so that the LMhold forj = 1,---,p:

(5), which determines the stability of the system, does not — () — () - (5)

; ‘o r I r TN1;

include any terms containing the product of the Lyapunov 11 12 13 1

J

matrices and the system matrices. This idea can easily bepg) _ | (T 532)) 0y T8 Ny | (16)
extended to a parameter-dependent Lyapunov functional for @HT  @IHT T 7N, ’
a system with polytopic-type uncertainties (2). Moreover, the T NT T NQTJ- T Ng,Tj —r Zj

Leibniz-Newton formula (9) is also employed to make the
criterion delay-dependent. Since the free weighting matrici&ere
N; (z = 1,2,3) in Eq. (9) express the relationship among ngl) =Q;+ Ny +N1Tj ,AJTTlT ~ Ty A,

z(t), © and/ s)ds, the relationship among fg) = N, — Ny — ATT] — Ty B,
the terms in the Leibniz- Newton formula is taken into account. W —p. + NT 41, — ATTT
13 J 33 1 J 3
In addition, the optimal weighting matrice§ and N; (i = () T .
1,2,3) can easily be determined by solving LMI (5). F2g = —(1=p)Q; — Naj = Nyj = T2 B; — B; Ty,
As shown in the proof of Lemma 1 in (13) can be chosen ) = —N3;+T, — B] Ty,

to be semi-positive, and the matric&s, No, Xi2, Xo2 and
Xo3 in Z and ¥ in (13) provide some extra freedom in the
selection of the weighting matrices, which have the potential
to yield less conservative results. When they are all zero, we Proof: Choose a Lyapunov functional candidate to be

f‘éjg):TZJ‘i‘Tg—f—Tg

obtain the following corollary, which is equivalent to Lemma P
1 in [8] for systems with a single delay. = Z (t)€; Pjax(
Corollary 1: For given scalars > 0 and . < 1, System j=1
Y with fixed matricesA and B and a time-varying delay
satisfying (3) and (4) is asymptotically stable if there exist Z / (5)€;Qjx(s)ds
P=P>0Q=Q" >0 2z=2z">0 X = j=1
X1 X3 . , . .
Lleé Xas ] > 0, and appropriately dimensioned matrices +Z/ / ()€, Z;2(s)dsdf, (17)
1, N3, Ty andTj3 such that the following LMIs hold. j t+6
[, Ty T whereP; = P >0,Q; =Qf >0andZ; =2 >0 (j =
M= | 1%, Iy I3 | <O, (14) 1,---,p) needto be determined. As in Lemma 1, the derivative
%, 1L, Il of V,(z;) along the solutions of SysteXi can be expressed
) as
[ X1 Xz N p
A= | XLy X33 N3 | >0, 15)  Vul@) < D n"(®)&EVn()
| N{ N§ Z j=1 (18)
where —Z/ T(t,5)6;99¢(t, 5)ds
d
H11:Q+N1+N?7ATT1T*T1A+TX11, ‘ (t)
Il = —-N; —T1B, wheren(t) and((¢, s) are defined in Lemma 1, and
H13:P+N5+T1—ATT5+TX13, . . .
:(J) ':(.7) :(.7)
MMy = —(1 — p)Q, ) s S =13
M3 = —NJ —BTT%T, 2V = @%) _5(;3)2) ?%33; , (19)
33 =72+ 135+ T3 + 7X33. (Elj?, )T (EQJ?, )T E3J3
N ED =W 4 rx) (i=1,2,3;i <k <3), (20)
B. Delay-dependent Robust Stability
. . . x @) x ) x@ N
It is clear that there do not exist any terms containing the (1% %2.) 1(3_) 1
product of any combination oP, Q and Z, or AB in the g0 = | (X)) Xy Xopt Noj | ()
derivative of the Lyapunov functional in Lemma 1. Therefore, X (xOHT X8 N,
this method can easily be extended to provide an LMI-based N{; Ny NS Z;
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So, following the same statements in LemmaZli) < 0 If a system is seen to be stable based on the delay-
and ) > 0 ensure the robust stability of Systel. independent criterion in Corollary 3, then the system is ro-
As a special case, if we choosg > 0 and setXU) = bustly stable for a time-varying delay(t), of any size that
Ny, Ny T satisfies (4) in the system, according to Theorem 1.
Nyj Zj—1 Nyj in Egs. (20) and (21), then the In addition, a delay- and rate-independent criterion also
Ns; Ns; can be derived from Corollary 3 by choosiiigy = 0 (j =
conditions=U) < 0 and ¥4 > 0 are equivalent to LMIs 1,---,p).
(16). [ ] Corollary 4: System X with polytopic-type uncertainties

Theorem 1 gives a delay- and rate-dependent robust d&) is robustly stable if there exigt; = PjT >0(j=1,---,p)
terion for a delay satisfying (3) and (4). Note that a delayand appropriately dimensioned matricEs(i = 1,2, 3) such
dependent and rate-independent criterion for a delay satisfyihgt the following LMIs hold forj = 1,-- -, p.

(3) can be derived from Theorem 1 by choosig= 0 (j =

1,---,p) as follows. —ATTf TT1A <I>§é) ‘P%)
Corol_lary 2: For a given scalarr > 0, System>. with U = (@512)) ~TyB; — BTTY <I>é73) <0,

polytopic-type uncertainties (2) and a time-varying delay sat- G T ) )

isfying (3) is robustly stable if there exigt; = PT > 0 and (®13) (®53) D33 (24)

Zj = ZT >0(=1,---,p), and approprlately dlmensmned G) =) () G . , .

matnces]\/'” (i =1, 2 3 j=1,---,p)andT; (i = 1,2,3) \(A;I;;req)lz ; @13, Pog and D3 (j =1,---,p) are defined in

such that the LMIs (22) hold foj = 1, cep
f‘gjl) f‘%) fgjg) TNy,

i e Y IIl. NUMERICAL EXAMPLES
po | @) T TH Ny

IC2AYARNG APV A M6 Na <0, (22 This section provides two examples that demonstrate how
(Iy3) (I'33) 33 TIV3j . o . .
NT NT NT _.7. effective the criteria presented in this paper are and that they
V15 TWNg;  TIV3; T ; T
are an improvement over existing methods.
where Example 1:Consider Systenx with polytopic-type uncer-
fgﬂl) = Ny + N - ATTT — Ty A;, tainties [7]:
5] = =Ny — NI —TyB; - BIT], [ 02 0 2 -1
rt) ) 1y Ay A= g oo P2 0 2
andT'{), T, T andT{) are defined in (16). - ’
R I R
C. Delay-independent Robust Stability L - —YLs T
As shown in the proof of Theorem /) only has to be By — [0 1 B._| 09 0
semi-positive, rather than positive. So, if we set the matrices 1 o] 7 -1 -11

Zj, XU (j=1,---,p)and Ny; (i = 1,2,3; j =1,---,p) When p = 0, the delay is time-invariant. The upper bound

0 zero, then we can obtain a delay mdependent and ra@éL the time-delay was found to be 0.4149 in [7] and 4.2423
dependent criterion. In this case, Theorem 1 becomes {Ad8]-[10]. However, based on Theorem 1 in this paper, the
following corollary. system is robustly stable for = 4.2501. The maximum
Corollary 3: For a given scalap, < 1, SystemY with Upper bound on the allowable size of the time delay given
polytopic-type uncertainties (2) and a time-varying delay sy Theorem 1 is more than 9 times larger than the one in
isfying (4) is robustly stable if there exigt; = P¥ > 0 and [7], and is better than the one in [8]-{10]. Xia's method [7]
Qi=QT>0(j=1,---,p), and approprlately dlmensmnedcan”Ot handle the case # 0. Table | shows a comparison
matricesT; (z = 1,2,3) such that the following LMIs hold of the upper bounds fop, 7 0 obtained by Fridman and

for j=1,---,p: Shaked’s method [8]-[10] and by our methods. (Theorem
) ) ) 1 and Corollary 2 were used to calculate the cages=
o7 Py Py 0 ~ 0.9 and anyp (rate-independent), respectively.) It is
o) — (q)g))T q,%) q;éé) <0, (23) clear that, since the relationships between the t¢(m and
)T T () terms z(¢) and xz(t — d(t)), and betweenz(t), z(t — d(t))
(®r5)  (P35) g3 t )
where and z(s)ds are taken into account, the upper bounds
t—d( t
O Q: — ATTT T, A, obtalned |n this paper are larger than those in [8]-[10].
%jl) J it ! 15 Example 2:Consider the following Systerii with a time-
o, = ATy —TB;, varying delay
o) = Pj+T - ATTY,
j 0 —0.12+12 —-0.1 —-0.35
oY) = —(1-wQ -8 - BTY, A=) ] e 0 O] e
of) = T,— BITY e '
j b

of) = T+ and [p| < 0.035 [10].
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TABLE |
CALCULATION RESULTS FOREXAMPLE 1.

(1]

m 0 0.1 05 09 [ anyu
Xia [7] 0.4149 - - - - (2]
Fridman and Shaked| 4.2423 | 3.3555 | 1.8088 | 0.9670 | 0.7963
[8]-[10]
Our method 42501 | 3.3637 | 1.8261 | 1.0589 | 0.9090 [3]
[4]
If we let p,,, = 0.035 and set
5]
A, — 0 —-0.12+12p,, A, — 0 —-0.12-12p,,
11 —0465—p, |7 72| 1 —0.465+pn |’ -
—0.1 —-0.35
Bl_BQ_B_{ 0 03 }
(26) [7

then the system is described by Eq. (2). Wher= 0, the
upper bound on the time-delay obtained in [8] and [9] igg)
0.782. Theorem 1 in [10] yields an upper bound of 0.863,
according to that paper, although calculations using MATLAB[Q]
6.5 and LMI Control Toolbox 1.0.8 yield a value of 0.782.
From Theorem 1 in this paper, we found that the system [i$]
robustly stable forr = 0.863, which is better than the values

in [8], [9] and the same as the one in [10]. In addition, Table ;]
shows a comparison of the upper boundsfg# 0 obtained by
Fridman and Shaked’s method [8]-[10] and by our methods?
(Theorem 1 and Corollary 2 were used to calculate the cases
=0~ 0.9 and anyu (rate-independent), respectively.) It ig13]
clear that the upper bounds obtained in this paper are larger
than, or at least equal to, those given in [8]-[10]. [14]

TABLE I

CALCULATION RESULTS FOREXAMPLE 2. [15]

“w 0 0.1 0.5 0.9 any p

Fridman and Shaked| 0.782 | 0.736 | 0.465 | 0.454 | 0.454 [16]
[8]-{10]

Our method 0.863 | 0.786 | 0.465 | 0.454 | 0.454

[17]

[18]
IV. CONCLUSION

This paper presents some new stability criteria for timet9]
delay systems with polytopic-type uncertainties. New tech-
nigues were developed to make the criteria less conservati
First, a delay-dependent stability criterion for a system without
uncertainties was derived by considering the relationshit;%s1
among the terms in the system variables. The relationsh pé
among the terms in the Leibniz-Newton formula were also
taken into account using some free weighting matrices, whit#!
were selected by LMIs. These techniques eliminated the terms
containing the product of the Lyapunov matrices and the
system matrices in the derivative of the Lyapunov functiondf4!
Then, this idea was extended to a system with polytopic-
type uncertainties, and new stability criteria were obtainegs]
Two numerical examples demonstrate the validity of the thefﬁ%
methods. The results show that the methods described in |§
paper are very effective and are an improvement over existing
methods.
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