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Parameter-Dependent Lyapunov Functional for
Stability of Time-Delay Systems with

Polytopic-Type Uncertainties
Yong He, Min Wu, Jin-Hua She,Member, IEEE,and Guo-Ping Liu,Member, IEEE,

Abstract— This paper concerns the problem of the robust sta-
bility of a linear system with a time-varying delay and polytopic-
type uncertainties. In order to construct a parameter-dependent
Lyapunov functional for the system, we first devised a new
method of dealing with a time-delay system without uncertainties.
In this method, the derivative terms of the state, which is in the
derivative of the Lyapunov functional, are retained and some free
weighting matrices are used to express the relationships among
the system variables, and among the terms in the Leibniz-Newton
formula. As a result, the Lyapunov matrices are not involved in
any product terms of the system matrices in the derivative of
the Lyapunov functional. This method is then easily extended to
a system with polytopic-type uncertainties. Numerical examples
demonstrate the validity of the proposed criteria.

Index Terms— time-varying delay, robust stability, parameter-
dependent Lyapunov functional, polytopic-type uncertainties,
linear matrix inequality (LMI).

I. I NTRODUCTION

T IME-DELAY systems are frequently encountered in vari-
ous areas, including engineering, biology, and economics

(see [1]). A time delay is often a source of instability and
oscillations in a system. In the past few years, the robust
stability of uncertain systems with time delays has received
considerable attention; and many papers have focused on
time-delay systems with polytopic-type uncertainties. Recent
efforts have shown that a parameter-dependent Lyapunov func-
tion/functional can overcome the conservatism of quadratic
stability conditions (see [2]–[10]). On the other hand, current
efforts to achieve robust stability in time-delay systems can
be divided into two categories (e.g., [11]), namely delay-
independent criteria (see [12]) and delay-dependent crite-
ria (see [7]–[10], [13]–[24]). It is well known that delay-
independent criteria tend to be conservative, especially when
the size of a delay is small. Recently, Park [18] presented
an improved version of the standard bounding method and
obtained some delay-dependent criteria for linear time-delay
systems that were better than previous results. Moonet al.
[19] extended Park’s idea to a more general form for uncertain
systems with time-invariant delays. Fridman and Shaked [8]–
[10] combined Park’s and Moon’s inequalities with a descrip-
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tor model transform and obtained more efficient criteria for
systems with polytopic-type uncertainties. Even though these
efforts have produced great progress, some issues remain that
require reconsideration. To give an example, in the derivative
of the Lyapunov functional, they used the Leibniz-Newton

formula and replaced the termx(t−τ) with x(t)−
∫ t

t−τ

ẋ(s)ds

in some places, but retained it in other places in order to make
the calculations easier. More specifically, in [19],x(t− τ) is

replaced byx(t) −
∫ t

t−τ

ẋ(s)ds in the term2xT (t)PA1ẋ(t),

but not in the termτ ẋT (t)Zẋ(t). Since bothx(t − τ) and

x(t)−
∫ t

t−τ

ẋ(s)ds affect the results, there must be a relation-

ship between them; but this point was not considered.
This paper presents some simple delay-dependent stability

criteria for linear systems with a time-varying delay. First,
we deal with a system with a time-varying delay that has
fixed system matrices. (System matrices are the matrices
in the dynamic equation of the system.) In the derivative
of the Lyapunov functional, the terṁx(t) is retained, but
the relationship among the terms in the system equation is
expressed by some free weighting matrices. In consequence,
the Lyapunov matrices, which are the matrices in the Lyapunov
functional, are not involved in any product terms with the
system matrices. Moreover, the relationship betweenx(t),

x(t − d(t)) and
∫ t

t−d(t)

ẋ(s)ds is expressed in terms of free

weighting matrices. This treatment avoids difficulties in the
handling of the Lyapunov functional. The results are expressed
as LMIs [25], and all of the parameters can easily be obtained
numerically. Then, this idea is extended to a time-varying-
delay system with polytopic-type uncertainties, and a less con-
servative criterion is obtained. On the other hand, it is shown
that the new criterion includes the delay-independent/rate-
dependent, delay-dependent/rate-independent, and delay- and
rate-independent criteria as special cases. Numerical examples
show that the results obtained in this paper are effective and
are an improvement over existing criteria.

II. STABILITY ISSUES

Consider a linear systemΣ with a time-varying delay

Σ :
{

ẋ(t) = Ax(t) + Bx(t− d(t)), t > 0,
x(t) = φ(t), t ∈ [−τ, 0], (1)
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wherex(t) ∈ Rn is the state vector. The matricesA andB are
subject to uncertainties and satisfy the real convex polytopic
model

[A B] ∈ Ω,

Ω :=



[A(ξ) B(ξ)]=

p∑

j=1

ξj [Aj Bj ] ,
p∑

j=1

ξj =1, ξj ≥ 0



 ,

(2)
where Aj , Bj (j = 1, · · · , p) are constant matrices with
appropriate dimensions andξj (j = 1, · · · , p) are time-
invariant uncertainties. The time delayd(t) is a time-varying
continuous function that satisfies

0 ≤ d(t) ≤ τ, (3)

and

ḋ(t) ≤ µ < 1, (4)

where τ and µ are constants and the initial conditionφ(t)
denotes a continuous vector-valued initial function oft ∈
[−τ, 0].

A. Delay-dependent Asymptotic Stability

In order to discuss the stability of SystemΣ, which has
polytopic-type uncertainties (2), first, we consider the case in
which the matricesA andB are fixed, i.e., the system has no
uncertainties. For this case, the following lemma holds.

Lemma 1:For given scalarsτ > 0 and µ < 1, System
Σ with fixed matricesA and B and a time-varying delay
satisfying (3) and (4) is asymptotically stable if there exist
P = PT > 0, Q = QT ≥ 0, Z = ZT > 0 and appropriately
dimensioned matricesNi and Ti (i = 1, 2, 3) such that the
following LMI holds:

Γ =




Γ11 Γ12 Γ13 τN1

ΓT
12 Γ22 Γ23 τN2

ΓT
13 ΓT

23 Γ33 τN3

τNT
1 τNT

2 τNT
3 −τZ


 < 0, (5)

where

Γ11 = Q + N1 + NT
1 −AT TT

1 − T1A,
Γ12 = NT

2 −N1 −AT TT
2 − T1B,

Γ13 = P + NT
3 + T1 −AT TT

3 ,
Γ22 = −(1− µ)Q−N2 −NT

2 − T2B −BT TT
2 ,

Γ23 = −NT
3 + T2 −BT TT

3 ,
Γ33 = τZ + T3 + TT

3 .
Proof: Choose a Lyapunov functional candidate to be

V (xt) := xT (t)Px(t) +
∫ t

t−d(t)

xT (s)Qx(s)ds

+
∫ 0

−τ

∫ t

t+θ

ẋT (s)Zẋ(s)dsdθ,

(6)

where matricesP = PT > 0, Q = QT ≥ 0 andZ = ZT ≥ 0
need to be determined. Calculating the derivative ofV (xt)

along the solution of SystemΣ yields

V̇ (xt) = 2xT (t)Pẋ(t)
+xT (t)Qx(t)− (1− ḋ(t))xT (t− d(t))Qx(t− d(t))

+τ ẋT (t)Zẋ(t)−
∫ t

t−τ

ẋT (s)Zẋ(s)ds

≤ 2xT (t)Pẋ(t)
+xT (t)Qx(t)− (1− µ)xT (t− d(t))Qx(t− d(t))

+τ ẋT (t)Zẋ(t)−
∫ t

t−d(t)

ẋT (s)Zẋ(s)ds.

(7)
The Leibniz-Newton formula provides

x(t)− x(t− d(t))−
∫ t

t−d(t)

ẋ(s)ds = 0. (8)

So, it is clear that, for appropriately dimensioned matrices
Ni (i = 1, 2, 3), the following is true:

2
[
xT (t)N1+xT (t− d(t))N2+ẋT (t)N3

] ∗[
x(t)− x(t− d(t))−

∫ t

t−d(t)

ẋ(s)ds

]
= 0.

(9)

Moreover, according to Eq. (1), for appropriately dimensioned
matricesTi (i = 1, 2, 3), we have

2
[
xT (t)T1 + xT (t− d(t))T2 + ẋT (t)T3

] ∗
[ẋ(t)−Ax(t)−Bx(t− d(t))] = 0.

(10)

On the other hand, for a semi-positive definite matrixX =


X11 X12 X13

XT
12 X22 X23

XT
13 XT

23 X33


 ≥ 0, the following holds.

τηT (t)Xη(t)−
∫ t

t−d(t)

ηT (t)Xη(t)ds ≥ 0, (11)

where
η(t) = [xT (t) xT (t− d(t)) ẋT (t)]T .

Then, adding the terms on the left of Eqs. (9)-(11) toV̇ (xt)
allows us to expresṡV (xt) as

V̇ (xt) ≤ ηT (t)Ξη(t)−
∫ t

t−d(t)

ζT (t, s)Ψζ(t, s)ds, (12)

where

ζ(t, s) = [ηT (t), ẋT (s)]T ,

Ξ =




Γ11 + τX11 Γ12 + τX12 Γ13 + τX13

ΓT
12 + τXT

12 Γ22 + τX22 Γ23 + τX23

ΓT
13 + τXT

13 ΓT
23 + τXT

23 Γ33 + τX33


 ,

Ψ =




X11 X12 X13 N1

XT
12 X22 X23 N2

XT
13 XT

23 X33 N3

NT
1 NT

2 NT
3 Z


 . (13)

If Ξ < 0 and Ψ ≥ 0, then V̇ (xt) < −ε‖x(t)‖2 for a
sufficiently small ε, which ensures the asymptotic stability
of SystemΣ [26]. Specifically, if we select aZ > 0 then

an X can be chosen to beX =




N1

N2

N3


 Z−1




N1

N2

N3




T

.
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This ensures thatX ≥ 0 and Ψ ≥ 0. In this case,Ξ < 0
is equivalent toΓ < 0, according to the Schur complement
[25].

Remark 1: It is clear from the proof of Lemma 1 that the
free weighting matricesTi (i = 1, 2, 3) in Eq. (10) are used
to express the relationship between the termẋ(t) and terms
x(t) and x(t − d(t)). The zero term2[xT (t)T1 + xT (t −
d(t))T2 + ẋT (t)T3] [ẋ(t)−Ax(t)−Bx(t− d(t))] is inserted
into the derivative of the Lyapunov functional so that the LMI
(5), which determines the stability of the system, does not
include any terms containing the product of the Lyapunov
matrices and the system matrices. This idea can easily be
extended to a parameter-dependent Lyapunov functional for
a system with polytopic-type uncertainties (2). Moreover, the
Leibniz-Newton formula (9) is also employed to make the
criterion delay-dependent. Since the free weighting matrices
Ni (i = 1, 2, 3) in Eq. (9) express the relationship among

x(t), x(t − d(t)) and
∫ t

t−d(t)

ẋ(s)ds, the relationship among

the terms in the Leibniz-Newton formula is taken into account.
In addition, the optimal weighting matricesTi and Ni (i =
1, 2, 3) can easily be determined by solving LMI (5).

As shown in the proof of Lemma 1,Ψ in (13) can be chosen
to be semi-positive, and the matricesT2, N2, X12, X22 and
X23 in Ξ and Ψ in (13) provide some extra freedom in the
selection of the weighting matrices, which have the potential
to yield less conservative results. When they are all zero, we
obtain the following corollary, which is equivalent to Lemma
1 in [8] for systems with a single delay.

Corollary 1: For given scalarsτ > 0 and µ < 1, System
Σ with fixed matricesA and B and a time-varying delay
satisfying (3) and (4) is asymptotically stable if there exist
P = PT > 0, Q = QT ≥ 0, Z = ZT ≥ 0, X =[

X11 X13

XT
13 X33

]
≥ 0, and appropriately dimensioned matrices

N1, N3, T1 andT3 such that the following LMIs hold.

Π =




Π11 Π12 Π13

ΠT
12 Π22 Π23

ΠT
13 ΠT

23 Π33


 < 0, (14)

Λ =




X11 X13 N1

XT
13 X33 N3

NT
1 NT

3 Z


 ≥ 0, (15)

where

Π11 = Q + N1 + NT
1 −AT TT

1 − T1A + τX11,
Π12 = −N1 − T1B,
Π13 = P + NT

3 + T1 −AT TT
3 + τX13,

Π22 = −(1− µ)Q,
Π23 = −NT

3 −BT TT
3 ,

Π33 = τZ + T3 + TT
3 + τX33.

B. Delay-dependent Robust Stability

It is clear that there do not exist any terms containing the
product of any combination ofP , Q and Z, or AB in the
derivative of the Lyapunov functional in Lemma 1. Therefore,
this method can easily be extended to provide an LMI-based

delay-dependent robust stability condition for SystemΣ with
polytopic-type uncertainties as follows:

Theorem 1:For given scalarsτ > 0 andµ < 1, SystemΣ
with polytopic-type uncertainties (2) and a time-varying delay
satisfying (3) and (4) is robustly stable if there existPj =
PT

j > 0, Qj = QT
j ≥ 0 and Zj = ZT

j > 0 (j = 1, · · · , p),
and appropriately dimensioned matricesNij (i = 1, 2, 3; j =
1, · · · , p) and Ti (i = 1, 2, 3) such that the following LMIs
hold for j = 1, · · · , p:

Γ̄(j) =




Γ̄(j)
11 Γ̄(j)

12 Γ̄(j)
13 τN1j

(Γ̄(j)
12 )

T
Γ̄(j)

22 Γ̄(j)
23 τN2j

(Γ̄(j)
13 )T (Γ̄(j)

23 )T Γ̄(j)
33 τN3j

τNT
1j τNT

2j τNT
3j −τZj


 < 0, (16)

where

Γ̄(j)
11 = Qj + N1j + NT

1j −AT
j TT

1 − T1Aj ,

Γ̄(j)
12 = NT

2j −N1j −AT
j TT

2 − T1Bj ,

Γ̄(j)
13 = Pj + NT

3j + T1 −AT
j TT

3 ,

Γ̄(j)
22 = −(1− µ)Qj −N2j −NT

2j − T2Bj −BT
j TT

2 ,

Γ̄(j)
23 = −NT

3j + T2 −BT
j TT

3 ,

Γ̄(j)
33 = τZj + T3 + TT

3 .

Proof: Choose a Lyapunov functional candidate to be

Vu(xt) :=
p∑

j=1

xT (t)ξjPjx(t)

+
p∑

j=1

∫ t

t−d(t)

xT (s)ξjQjx(s)ds

+
p∑

j=1

∫ 0

−τ

∫ t

t+θ

ẋT (s)ξjZj ẋ(s)dsdθ, (17)

wherePj = PT
j > 0, Qj = QT

j ≥ 0 andZj = ZT
j ≥ 0 (j =

1, · · · , p) need to be determined. As in Lemma 1, the derivative
of Vu(xt) along the solutions of SystemΣ can be expressed
as

V̇u(xt) ≤
p∑

j=1

ηT (t)ξjΞ̄(j)η(t)

−
p∑

j=1

∫ t

t−d(t)

ζT (t, s)ξjΨ̄(j)ζ(t, s)ds,

(18)

whereη(t) andζ(t, s) are defined in Lemma 1, and

Ξ̄(j) =




Ξ̄(j)
11 Ξ̄(j)

12 Ξ̄(j)
13

(Ξ̄(j)
12 )

T
Ξ̄(j)

22 Ξ̄(j)
23

(Ξ̄(j)
13 )T (Ξ̄(j)

23 )T Ξ̄(j)
33


 , (19)

Ξ̄(j)
ik = Γ̄(j)

ik + τX
(j)
ik (i = 1, 2, 3; i ≤ k ≤ 3), (20)

Ψ̄(j) =




X
(j)
11 X

(j)
12 X

(j)
13 N1j

(X(j)
12 )T X

(j)
22 X

(j)
23 N2j

(X(j)
13 )T (X(j)

23 )T X
(j)
33 N3j

NT
1j NT

2j NT
3j Zj


 . (21)
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So, following the same statements in Lemma 1,Ξ̄(j) < 0
and Ψ̄(j) ≥ 0 ensure the robust stability of SystemΣ.
As a special case, if we chooseZj > 0 and setX(j) =


N1j

N2j

N3j


 Z−1

j




N1j

N2j

N3j




T

in Eqs. (20) and (21), then the

conditions Ξ̄(j) < 0 and Ψ̄(j) ≥ 0 are equivalent to LMIs
(16).

Theorem 1 gives a delay- and rate-dependent robust cri-
terion for a delay satisfying (3) and (4). Note that a delay-
dependent and rate-independent criterion for a delay satisfying
(3) can be derived from Theorem 1 by choosingQj = 0 (j =
1, · · · , p) as follows.

Corollary 2: For a given scalarτ > 0, SystemΣ with
polytopic-type uncertainties (2) and a time-varying delay sat-
isfying (3) is robustly stable if there existPj = PT

j > 0 and
Zj = ZT

j > 0 (j = 1, · · · , p), and appropriately dimensioned
matricesNij (i = 1, 2, 3; j = 1, · · · , p) and Ti (i = 1, 2, 3)
such that the LMIs (22) hold forj = 1, · · · , p.

Γ̂(j) =




Γ̂(j)
11 Γ̄(j)

12 Γ̄(j)
13 τN1j

(Γ̄(j)
12 )

T
Γ̂(j)

22 Γ̄(j)
23 τN2j

(Γ̄(j)
13 )T (Γ̄(j)

23 )T Γ̄(j)
33 τN3j

τNT
1j τNT

2j τNT
3j −τZj


 < 0, (22)

where

Γ̂(j)
11 = N1j + NT

1j −AT
j TT

1 − T1Aj ,

Γ̂(j)
22 = −N2j −NT

2j − T2Bj −BT
j TT

2 ,

and Γ̄(j)
12 , Γ̄(j)

13 , Γ̄(j)
23 and Γ̄(j)

33 are defined in (16).

C. Delay-independent Robust Stability

As shown in the proof of Theorem 1,̄Ψ(j) only has to be
semi-positive, rather than positive. So, if we set the matrices
Zj , X(j) (j = 1, · · · , p) and Nij (i = 1, 2, 3; j = 1, · · · , p)
to zero, then we can obtain a delay-independent and rate-
dependent criterion. In this case, Theorem 1 becomes the
following corollary.

Corollary 3: For a given scalarµ < 1, SystemΣ with
polytopic-type uncertainties (2) and a time-varying delay sat-
isfying (4) is robustly stable if there existPj = PT

j > 0 and
Qj = QT

j ≥ 0 (j = 1, · · · , p), and appropriately dimensioned
matricesTi (i = 1, 2, 3) such that the following LMIs hold
for j = 1, · · · , p:

Φ(j) =




Φ(j)
11 Φ(j)

12 Φ(j)
13

(Φ(j)
12 )

T
Φ(j)

22 Φ(j)
23

(Φ(j)
13 )

T
(Φ(j)

23 )
T

Φ(j)
33


 < 0, (23)

where

Φ(j)
11 = Qj −AT

j TT
1 − T1Aj ,

Φ(j)
12 = −AT

j TT
2 − T1Bj ,

Φ(j)
13 = Pj + T1 −AT

j TT
3 ,

Φ(j)
22 = −(1− µ)Qj − T2Bj −BT

j TT
2 ,

Φ(j)
23 = T2 −BT

j TT
3 ,

Φ(j)
33 = T3 + TT

3 .

If a system is seen to be stable based on the delay-
independent criterion in Corollary 3, then the system is ro-
bustly stable for a time-varying delay,d(t), of any size that
satisfies (4) in the system, according to Theorem 1.

In addition, a delay- and rate-independent criterion also
can be derived from Corollary 3 by choosingQj = 0 (j =
1, · · · , p).

Corollary 4: System Σ with polytopic-type uncertainties
(2) is robustly stable if there existPj = PT

j > 0 (j = 1, · · · , p)
and appropriately dimensioned matricesTi (i = 1, 2, 3) such
that the following LMIs hold forj = 1, · · · , p.

Φ̄(j) =



−AT

j TT
1 − T1Aj Φ(j)

12 Φ(j)
13

(Φ(j)
12 )

T −T2Bj −BT
j TT

2 Φ(j)
23

(Φ(j)
13 )

T
(Φ(j)

23 )
T

Φ(j)
33


 < 0,

(24)
whereΦ(j)

12 , Φ(j)
13 ,Φ(j)

23 and Φ(j)
33 (j = 1, · · · , p) are defined in

(23).

III. N UMERICAL EXAMPLES

This section provides two examples that demonstrate how
effective the criteria presented in this paper are and that they
are an improvement over existing methods.

Example 1:Consider SystemΣ with polytopic-type uncer-
tainties [7]:

A1 =
[ −0.2 0

0 −0.09

]
, A2 =

[ −2 −1
0 −2

]
,

A3 =
[ −1.9 0

0 −1

]
, B1 =

[ −0.1 0
−0.1 −0.1

]
,

B2 =
[

0 1
1 0

]
, B3 =

[ −0.9 0
−1 −1.1

]
.

Whenµ = 0, the delay is time-invariant. The upper bound
on the time-delay was found to be 0.4149 in [7] and 4.2423
in [8]–[10]. However, based on Theorem 1 in this paper, the
system is robustly stable forτ = 4.2501. The maximum
upper bound on the allowable size of the time delay given
by Theorem 1 is more than 9 times larger than the one in
[7], and is better than the one in [8]–[10]. Xia’s method [7]
cannot handle the caseµ 6= 0. Table I shows a comparison
of the upper bounds forµ 6= 0 obtained by Fridman and
Shaked’s method [8]–[10] and by our methods. (Theorem
1 and Corollary 2 were used to calculate the casesµ =
0 ∼ 0.9 and anyµ (rate-independent), respectively.) It is
clear that, since the relationships between the termẋ(t) and
terms x(t) and x(t − d(t)), and betweenx(t), x(t − d(t))

and
∫ t

t−d(t)

ẋ(s)ds are taken into account, the upper bounds

obtained in this paper are larger than those in [8]–[10].
Example 2:Consider the following SystemΣ with a time-

varying delay

A=
[

0 −0.12+12ρ
1 −0.465− ρ

]
, B=

[ −0.1 −0.35
0 0.3

]
, (25)

and |ρ| ≤ 0.035 [10].
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TABLE I

CALCULATION RESULTS FOREXAMPLE 1.

µ 0 0.1 0.5 0.9 any µ
Xia [7] 0.4149 - - - -
Fridman and Shaked
[8]–[10]

4.2423 3.3555 1.8088 0.9670 0.7963

Our method 4.2501 3.3637 1.8261 1.0589 0.9090

If we let ρm = 0.035 and set

A1 =
[

0 −0.12+12ρm

1 −0.465− ρm

]
, A2 =

[
0 −0.12−12ρm

1 −0.465+ ρm

]
,

B1 = B2 = B =
[ −0.1 −0.35

0 0.3

]
,

(26)
then the system is described by Eq. (2). Whenµ = 0, the
upper bound on the time-delay obtained in [8] and [9] is
0.782. Theorem 1 in [10] yields an upper bound of 0.863,
according to that paper, although calculations using MATLAB
6.5 and LMI Control Toolbox 1.0.8 yield a value of 0.782.
From Theorem 1 in this paper, we found that the system is
robustly stable forτ = 0.863, which is better than the values
in [8], [9] and the same as the one in [10]. In addition, Table II
shows a comparison of the upper bounds forµ 6= 0 obtained by
Fridman and Shaked’s method [8]–[10] and by our methods.
(Theorem 1 and Corollary 2 were used to calculate the cases
µ = 0 ∼ 0.9 and anyµ (rate-independent), respectively.) It is
clear that the upper bounds obtained in this paper are larger
than, or at least equal to, those given in [8]–[10].

TABLE II

CALCULATION RESULTS FOREXAMPLE 2.

µ 0 0.1 0.5 0.9 any µ

Fridman and Shaked
[8]–[10]

0.782 0.736 0.465 0.454 0.454

Our method 0.863 0.786 0.465 0.454 0.454

IV. CONCLUSION

This paper presents some new stability criteria for time-
delay systems with polytopic-type uncertainties. New tech-
niques were developed to make the criteria less conservative.
First, a delay-dependent stability criterion for a system without
uncertainties was derived by considering the relationships
among the terms in the system variables. The relationships
among the terms in the Leibniz-Newton formula were also
taken into account using some free weighting matrices, which
were selected by LMIs. These techniques eliminated the terms
containing the product of the Lyapunov matrices and the
system matrices in the derivative of the Lyapunov functional.
Then, this idea was extended to a system with polytopic-
type uncertainties, and new stability criteria were obtained.
Two numerical examples demonstrate the validity of the these
methods. The results show that the methods described in this
paper are very effective and are an improvement over existing
methods.
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