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1. Introduction
Underactuated mechanical systems possess fewer actuators than the degrees of

freedom [1]. This kind of system can perform complex tasks with a small number of

actuators and has the advantages of being light, cheap, energy-efficient, and highly

reliable. For these reasons, underactuated mechanical systems have been receiving a

great deal of attention recently. On the other hand, because of the complexity of their

nonlinear dynamics and their holonomic/nonholonomic behavior, control of this kind of

system is very difficult [e.g., 2, 3]

An acrobot is a good example of an underactuated mechanical system. The acrobot

considered in this paper is a two-link manipulator operating in a vertical plane. It

consists of one joint each at the shoulder and elbow with a single actuator at the elbow.

The first link, which is attached to the passive joint, can rotate freely. The second link is

attached to the actuated joint, where a motor is mounted to provide a control torque. The

control objective in this study is to swing it up from the stable downward equilibrium

position to the unstable straight-up equilibrium position and balance it there.

In recent years, a considerable number of approaches and methods of controlling an

acrobot have been proposed. For example, Hauser and Murray [4], and Bortoff and

Spong [5] have investigated the problem of balancing an acrobot at the unstable

straight-up equilibrium position and controlling its motion along the unstable

equilibrium manifold using nonlinear-approximation and pseudolinearization methods,

respectively. Berkemeier and Fearing [6] have studied the application of nonlinear

control to achieve sliding and hopping gaits of an acrobot. A time-state control scheme

has been proposed by She, et al. [7] for upswing control.

Lee and Smith [8] have described a fuzzy control method that combines genetic

algorithms, dynamic switching fuzzy systems and meta-rule techniques for the

automatic design and tuning of an acrobot fuzzy control system. The genetic algorithms

utilize PD control results. They showed that the performance was much better than that

obtainable with PD control. However, this method is very complicated.

 In [9], Brown and Passino have presented the design of an LQR (linear quadratic

regulator), fuzzy and adapitive fuzzy controllers to balance the acrobot, and a PD

controller with inner-loop partial feedback linearization, a state feedback controller and

a fuzzy controller to swing the acrobot up. They also used genetic algorithms to tune the

parameters of the balancing and swing-up controllers. The simulation results were good.

However, the methods are complicated and the settling time is relatively long.

Spong [10, 11, 12] has described a partial feedback linearization method to swing an

acrobot up and has used the techniques of pseudolinearization/LQR to balance it. The

basic swing-up strategy is to choose an external control to swing the second link so that

the amplitude of the swing of the first link increases with each swing. However, the
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upswing control law was chosen based on the condition under which the energy of a

single link increases. So, theoretically, it did not guarantee that the energy of the acrobot

increased with each swing. In addition, as pointed out by [11], the LQR balancing

control law makes the region for balance control very small.

  This paper proposes a fuzzy control strategy that employs a model-free fuzzy

controller to swing the acrobot up and a model-based fuzzy controller to balance it. In

the swing-up process, the control law for the torque is derived directly from the energy

of the acrobot, and the model-free fuzzy controller regulates the amplitude of the

control torque according to the energy. The key point is to choose a control torque that

guarantees that the energy of the acrobot increases with each swing. This is quite

different from the method proposed by Spong [10, 11, 12]. The main feature of this

strategy is that the amplitude of the control torque decreases as the energy increases.

Hence, the acrobot moves into the neighborhood of the unstable straight-up equilibrium

position very smoothly. In the balancing process, a Takagi-Sugeno fuzzy model is

constructed to approximate the dynamics of the acrobot. The model-based fuzzy

controller, which uses the Takagi-Sugeno fuzzy model, employs the concept of parallel

distributed compensation. Unlike the methods of [8, 9], the design is simple, and the

stability of the fuzzy control system for balance control is guaranteed by a common

symmetric positive matrix, which satisfies linear matrix inequalities (LMIs) and is

found by a convex optimization technique. Since the Takagi-Sugeno fuzzy model

describes the acrobot with a satisfactory approximated precision over a large region, the

model-based fuzzy balancing control law makes the region for balance control larger

than it is with LQR. The validity of the proposed strategy is demonstrated by simulation

results.

2. Dynamics of the acrobot
Consider the acrobot shown in Figure 1. Its dynamic equations are

m q m q c g11 1 12 2 1 1 0( )&& ( )&& ( , & ) ( )q q q q q+ + + = , (1a)

m q m q c g21 1 22 2 2 2( )&& ( )&& ( , & ) ( )q q q q q+ + + = τ , (2b)

where

q = q q
T

1 2 , (2)

m m L I m L I m L m L L qg g g11 1 1
2

1 2 2
2

2 2 1
2

2 1 2 22( ) cosq = + + + + + , (3a)

m m L Ig22 2 2
2

2( )q = + , (3b)

m m m L I m L L qg g12 21 2 2
2

2 2 1 2 2( ) ( ) cosq q= = + + , (3c)

c m L L q q q qg1 2 1 2 2 1 2 22( , & ) & ( & & ) sinq q = − + , (4a)

c m L L q qg2 2 1 2 1
2

2( , & ) & sinq q = , (4b)

g m L m L g q m L g q qg g1 1 1 2 1 1 2 2 1 2( ) ( ) sin sin( )q = − + − + , (5a)

g m L g q qg2 2 2 1 2( ) sin( )q = − + . (5b)
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For the link i i (  2)= 1, , the parameters q q m L Li i i i gi,  ,    & , ,  and Ii  are the angle, the

angular velocity, the mass, the link length, the center of mass, and the moment of inertia,

respectively. The inertia matrix M q( ) is

M q
q q
q q

( )
( ) ( )
( ) ( )

= LNM
O
QP

m m
m m

11 12

21 22

, (6)

which is symmetric and positive definite.

[Insert Figure 1 about here]

The acrobot has the following characteristics:

1) It is second-order nonholonomic.

2) It cannot be exactly linearized in the time domain.

Remark: Characteristic 1 is direct result of Proposition 2.1 and 2.2 in [1].

Characteristic 2 can easily be derived from Lemma 2.5 in [13].

In this paper, the motion space of the acrobot is divided into two subspaces: one is the

attractive area in the neighborhood of the unstable straight-up equilibrium position, and

the remainder is the swing-up area. Two small positive numbers, λ1  and λ 2 , are used

to define the two subspaces.

Swing-up area: q q q1 1 1 2 2> + >λ λ or , (7)

Attractive area: q q q1 1 1 2 2≤ + ≤λ λ and  . (8)

  In the swing-up area, a model-free fuzzy controller swings the acrobot up; in the

attractive area, a fuzzy controller based on a Takagi-Sugeno fuzzy model balances it.

3. Control in the swing-up area
In the swing-up area, the control torque is derived directly from the energy of the

acrobot. A model-free fuzzy controller is designed to regulate its amplitude in order to

guarantee smooth movement from the swing-up area into the attractive area.

3.1. Determining the control torque

  The energy of the acrobot is given by

E T V( , & ) ( , & ) ( )q q q q q  = + , (9)

where T( , & )q q  is the kinetic energy and V ( )q is the potential energy, both of which are

expressed in generalized coordinates. They are defined as follows:

T T( , & ) & ( ) &q q q M q q =
1

2
, (10a)
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V V m ghi i i
ii

( ) ( ) ( )q q q= =
==
∑∑

1

2

1

2

, (10b)

where Vi ( )q  and hi ( )q  are the potential energy and the height of the center of mass of

the ith link, respectively. h1( )q  and h2 ( )q are given by

h m L m L g qg1 1 1 2 1 1( ) ( ) cosq = + , (11a)

h m L g q qg2 2 2 1 2( ) cos( )q = + . (11b)

  During an upswing, the energy of the acrobot should increase continuously until it

reaches the amount that the acrobot has at the unstable straight-up equilibrium position.

This means that the derivation of the energy should satisfy the following condition in

the swing-up area.
& ( , & )E q q ≥ 0 . (12)

  Differentiating (9) yields

& ( , & )
( , & )

&

( , & )

&

&&
&&

( , & ) ( , & ) &
&

E
T

q

T

q
q
q

T

q

T

q
q
q

q q
q q q q q q q q

 
   

=
∂

∂
∂
∂

L
NM

O
QP
L
NM
O
QP +

∂
∂

∂
∂

L
NM

O
QP
L
NM
O
QP1 2

1

2 1 2

1

2

                +
∂
∂

∂
∂

L
NM

O
QP
L
NM
O
QP

V

q

V

q
q
q

( ) ( ) &
&

q q

1 2

1

2

. (13)

  From (10a), we obtain

∂
∂

∂
∂

L
NM

O
QP =

T

q

T

q
q q1

( , & )

&

( , & )

&
& & ( )

q q q q
M q

  

1 2
2 , (14)

and

∂
∂

∂
∂

L
NM

O
QP
L
NM
O
QP =

L
NM
O
QP

T

q

T

q
q
q

c c
q
q

( , & ) ( , & ) &
&

( , & ) ( , & )
&
&

q q q q
q q q q

  
  

1 2

1

2
1 2

1

2

. (15)

  The following equation is derived from (10b)

∂
∂

∂
∂

L
NM

O
QP =

V

q

V

q
g g

( ) ( )
( ) ( )

q q
q q

1 2
1 2 . (16)

  Rewriting the dynamic equations (1a) and (1b) gives

&&
&&

( )
( , & ) ( )
( , & ) ( )

q
q

c g
c g

1

2

1 1 1

2 2

L
NM
O
QP =

− −
− −
L
NM

O
QP

−M q
q q q
q q q

 
 τ . (17)

  Substituting (14), (15), (16), and (17) into (13) yields
& ( , & ) &E qq q = 2τ . (18)

  So, the control torque for swing-up may be chosen to be

τ υ= sgn( & )q2 ,  υ ≥ 0 (19)
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to satisfy (12).

3.2 . Design of model-free fuzzy controller

The control variable υ  in (19) can be chosen arbitrarily in the admissible range of

the control torque as long as it is positive. Clearly, the amplitude of the control torque

should be chosen so that it decreases as the energy increases. That makes the acrobot

enter the attractive area smoothly when the control law changes. To implement this

strategy, a model-free fuzzy controller is designed to determine the control variable υ .

Since the only function of the model-free fuzzy control is to ensure that the amplitude of

the control torque decreases when the energy increases, a simple fuzzy controller is

good enough.

A basic fuzzy control method [14, 15] is used to design the model-free fuzzy

controller. The input of the model-free fuzzy controller is the energy E( , & )q q , the

fuzzy output variable is υ f , and the crisp output is the control variable υ . The fuzzy

relation between the energy E( , & )q q  and the fuzzy output variable υ f  is the set of

simple fuzzy rules listed in Table 1. The membership functions (mfs) for fuzzy

input/output linguistic variables are chosen to have the triangular shapes shown in

Figure 2. The crisp output, υ , is obtained by applying the center-of-gravity

defuzzification method to the fuzzy output variable υ f .

 [Insert Table 1 about here]

[Insert Figure 2 about here]

Remark: The fuzzy rules listed in Table 1 can also be implemented with a simple

linear controller with saturation. However, fuzzy logic gives us flexibility in

constructing a control law. If two suitable fuzzy sets for the energy, E( , & )q q , and the

fuzzy output variable, υ f , are chosen, it is possible to obtain a control law that

provides better control performance, e.g., a shorter settling time, smoother movement

from the swing-up area into the attractive area, etc., using fuzzy logic rather than a

simple linear controller.

The model-free fuzzy controller is employed until the acrobot enters the attractive

area. Then the fuzzy controller based on a Takagi-Sugeno fuzzy model balances it.
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4. Control in the attractive area
The attractive area is defined as q1 1 1   ∈ −[ , ]λ λ  and q q1 2 2 2+    ∈ −[ , ]λ λ . The

dynamics of the acrobot in this area is nonlinear, and a linear approximate model around

the unstable straight-up equilibrium position is usually used for control. However,

linearization based solely on the coordinate of the unstable straight-up equilibrium

position makes either the attractive area very small, or the control torque for the acrobot

entering the area very large. For example, if λ1  and λ 2  are both π / 4 , then q2  is in

the range [ , ] [ / , / ]− − + −λ λ λ λ π π1 2 1 2 2 2  =  . Clearly, cos( )q2 , which is involved in

the dynamics, cannot be approximated very well over such a wide range. To achieve

better control, a model is needed that describes the motion in this area more precisely.

Takagi and Sugeno [16] have introduced a model-based analytical method into fuzzy

control (Takagi-Sugeno fuzzy model). The main feature of a Takagi-Sugeno fuzzy

model is that the local dynamics of each fuzzy implication are described by a linear

model. The overall fuzzy model of the system is a fuzzy blend of the linear models. The

Takagi-Sugeno fuzzy modeling method is a multiple model approach that can handle

uncertain and time-varying situations. To design a model-based fuzzy controller, a set of

fuzzy rules is first used to derive suitable local linear state space models. Then, a set of

local controllers is designed based on the models using the parallel distributed

compensation method. Finally, the fuzzy controller is obtained by the fuzzy blending of

the local controllers. This method gives us a more suitable way to describe the

nonlinearity of the acrobot in the attractive area. The dynamics of the acrobot in this

area are captured by a set of fuzzy implications that characterize local relations. When

the fuzzy controller obtained by the fuzzy blending of the local controllers is used to

balance the acrobot, the stability of the fuzzy control system for balance control is

guaranteed if a common symmetric positive definite matrix can be found for all local

linear models.

4.1. Takagi-Sugeno fuzzy model

To reduce the design effort and complexity, as few rules as possible are chosen. The

Takagi-Sugeno fuzzy system in the attractive area is shown in Table 2, where

z q q= 1 2/ , x = =x x x x q q q q
T T

1 2 3 4 1 2 1 2& & , c c1 2 and  are constants, and

c c1 2 0> > .

[Insert Table 2 about here]

It is clear that two linear models are used to describe the acrobot. In Rule 1, the

acrobot is linearized with the coordinate xδ δ=  0 0 0
T

; and in Rule 2, it is

linearized with the coordinate xθ θ=  0 0 0
T

(where θ δ> ≥ 0).

In the attractive area, q1 1 1   ∈ −[ , ]λ λ  and q q1 2 2 2+    ∈ −[ , ]λ λ . Since λ1  and λ 2
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are very small, sinq1  and sin( )q q1 2+  can be approximated by q1  and q q1 2+ ,

respectively. According to equations (1a) and (1b), the linear approximate model for the

coordinate xφ φ= 0 0 0
T

 (where x x xφ δ θ=  or ) is as follows:
& ( ) ( )x A x b= +φ φ τ , (20)

where

A b( ) ( ) ( )
( ) ( )

, ( ) ( )
( )

,φ φ φ
φ φ

φ φ
φ

=

L

N
MMM

O

Q
PPP

=

L

N
MMM

O

Q
PPP

0 0 1 0
0 0 0 1

0 0
0 0

0
0

31 32

41 42

3

4

a a
a a

b
b

(21)

qφ φ= 0
T

, (22a)

a a b

a a b
41 42 4

31 32 3

1

0

( ) ( ) ( )

( ) ( ) ( )

( )

det ( )

φ φ φ
φ φ φ

β β
α β β

φ

φ

−
− −
L
NM

O
QP =

−
+ −
L
NM

O
QP

M q

M q
, (22b)

α = − +( )m L m L gg1 1 2 1 , (23a)

β = −m L gg2 2 , (23b)
Substituting the coordinates xδ  and xθ  into (21) yields the following two local

linear models

( , ) ( ( ), ( ))A b A b11   = δ δ  (24)

and

( , ) ( ( ), ( ))A b A b2 2  = θ θ , (25)

respectively. So, the dynamics of the approximate fuzzy model is represented by

&

( )( )

( )
x

A x b

=
+

=

=

∑

∑

µ τ

µ

j j j
j

j

z

z
j

1

2

1

2 , (26)

where µ1( )z  and µ 2 ( )z  are the membership functions for Rules 1 and 2, respectively.

They are defined as

µ π
1

2

1 2

1 2
2 1

1

0 0

1

2

1

2 2

1

( ) sin ( )z

z c

c c
z

c c
c z c

z c

=

≤ ≤

+
−

−
+

< ≤

R
S
||

T
||

                                                      

           

                                                       >

(27a)

µ µ2 11( ) ( )z z= − , (27b)

and shown in Figure 3.

[Insert Figure 3 about here]

4.2. Design of fuzzy controller
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The concept of parallel distributed compensation [17, 18] is utilized to design local

controllers. The basic idea is to design a corresponding controller for each local linear

model. This paper employs the pole assignment approach to design the local linear

controllers. The full state is assumed to be available and the design results are given in

Table 3. Finally, the resulting overall fuzzy controller obtained by the fuzzy blending of

the individual linear controllers is

τ
µ

µ
=
−

=

=

∑

∑

j j
j

j
j

z

z

( )

( )

f x
1

2

1

2 . (28)

This is used to balance the acrobot. Controller (28) is nonlinear in general. It is clear

that the parallel distributed compensation method employs two controllers with

automatic switching via fuzzy rules.

[Insert Table 3 about here]

Substituting (28) into (26) yields the following fuzzy control system:

&

( ) ( )( )

( ) ( )
x

A b f x

=
−

==

==

∑∑

∑∑

µ µ

µ µ

j
k

k j j k
j

j
k

k
j

z z

z z

1

2

1

2

1

2

1

2 . (29)

To guarantee stability, the results in [19] were applied to the fuzzy control system

(29), and the following sufficient condition for stability was obtained.

Theorem 1: The fuzzy control system (29) is asymptotically stable at the unstable

straight-up equilibrium position if there exists a common symmetric positive definite

matrix P  such that the following LMIs hold:

( ) ( ) ,A b f P P A b fj j k
T

j j k− + − < 0 j, k = 1, 2 (30)

It is known that finding the matrix P  is a convex feasibility problem. Great efforts

have been devoted to solving this problem. A trial-and-error procedure (Tanaka and

Sugeno, 1992) has been tried. Now, this problem can be solved efficiently by using the

interior-point method [20].

5. Simulation
The parameters of the acrobot are given in Table 4 [11]. The parameters λ1  and λ 2 ,

which divide the motion space, are chosen to be

λ λ π1 2 4= = / rad. (31)

Two linear approximate models in the attractive area are obtained at

δ = 0 rad (32a)

and
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θ π= / rad4 . (32a)

The parameters c1  and c2 , which are used to construct the Takagi-Sugeno fuzzy model,

are chosen to be

c c1 24 01= =, . . (33)

[Insert Table 4 about here]

For the attractive area, substituting δ , θ  and the parameters in Table 4 into (24) and

(25) yields these local linear models:

A b1 1

0 0 1 0
0 0 0 1

12 6163 12 6797 0 0
14 7325 29 5830 0 0

0
0

30147
6 0332

= −
−

L

N
MMM

O

Q
PPP

= −

L

N
MMM

O

Q
PPP. .

. .

, .
.

,    (34)

A  b2 2

0 0 1 0
0 0 0 1

9 9163 54432 0 0
7 8176 157068 0 0

0
0

16003
32029

= −
−

L

N
MMM

O

Q
PPP

= −

L

N
MMM

O

Q
PPP. .

. .

, .
.

      . (35)

Two local controllers are designed by applying the method of parallel distributed

compensation to ( , )A b1 1  and ( , )A b2 2 . The local feedback gains f1  and f2 are

determined by selecting (-2, –2.4, –2.2, –2.6) as the eigenvalues of the local linear

subsystems. They are:

f1 72 5571 24 0169 305870 13 7590= − − − −[ . . . . ] , (36)

f2 134 8258 49 486 53998 24108= − − − −. . . . . (37)

The overall parallel distributed compensation controller is

τ µ µ= − −1 1 2 2( ) ( )z zf x f x . (38)

  The following symmetric positive definite matrix P  is obtained by using the LMI

algorithm.

P =

L

N
MMM

O

Q
PPP

81223 34031 32487 15189
34031 14306 13710 0 6416
32487 13710 19326 0 9003
15189 0 6416 0 9003 0 4210

. . . .

. . . .

. . . .

. . . .

. (39)

  So, the sufficient condition for stabilizing (30) is satisfied. In other words, the fuzzy

control system is asymptotically stable for fuzzy control law (38).

  If we let the energy of the acrobot in the horizontal position be zero, then the energy

at the unstable straight-up equilibrium position is 24.5 J, and the energy range is [-24.5 J,

24.5 J]. If we assume that the maximum torque is 3 Nm, then the range of the control

torque is [-3 Nm, 3 Nm].
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Figures 4-9 show simulation results for the initial condition x( )0 0 0 0= π T
.

When 0 7 63≤ <t .  s , the model-free fuzzy controller is used for swing-up control. The

energy keeps increasing and the amplitude of the control torque keeps decreasing during

this period. The control law is switched from model-free fuzzy control to model-based

fuzzy control at t = 7 63.  s . The model-based fuzzy controller is used for balancing

control when t ≥ 7 63.  s. The simulation results show that the response is very soft when

the control law changes, and the control torque in the attractive area is very small; the

state converges smoothly to the unstable straight-up equilibrium position.

[Insert Figures 4-9 about here]

6. Conclusions
A control strategy combining model-free and model-based fuzzy control has been

developed for controlling an acrobot. The model-free fuzzy controller is used for swing-

up control. It is designed to guarantee that the energy of the acrobot increases with each

swing, and the amplitude of the control torque decreases as the energy increases. This

strategy ensures a soft switching of the control laws when the acrobot passes from the

swing-up area into the attractive area. The model-based fuzzy controller is used for

balance control and is designed by combining the Takagi-Sugeno fuzzy model with the

method of parallel distributed compensation. The stability of the fuzzy control system

for balance control is guaranteed by a common symmetric positive matrix. Simulation

results have demonstrated the validity of the method.

  The proposed strategy can easily be extended to the motion control of an n-degree-of-

freedom underactuated mechanical system in a vertical plane. It can also be used on

some mechanical systems with strong nonlinearity, for example, an inverted pendulum.
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Captions of Figures and Tables

Figure 1. Model of the acrobot.

Figure 2. Membership functions of the input/output linguistic variable.

Figure 3. Membership functions µ1( )z  and µ 2 ( )z .

Figure 4. Control torque.

Figure 5. Energy of the acrobot.

Figure 6. Angle of the first link.

Figure 7. Angle of the second link.

Figure 8. Velocity of the first link.

Figure 9. Velocity of the second link.

Table 1. Fuzzy control rules to swing the acrobot up.

Table 2. Takagi-Sugeno fuzzy system for the acrobot.

Table 3. The local linear controllers.

Table 4. Parameters of the acrobot for simulation.
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Figure 1. Model of the acrobot.

Figure 2. Membership functions of the input/output linguistic variable.

     Figure 3. Membership functions µ1( )z  and µ2 ( )z .
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Figure 4. Control torque.

Figure 5. Energy of the acrobot.

Figure 6. Angle of the first link.
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Figure 7. Angle of the second link.

Figure 8. Velocity of the first link.

Figure 9. Velocity of the second link.
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Table 1. Fuzzy control rules to swing the acrobot up.

If Then

E( , & )q q is small υ f  is large

E( , & )q q is medium υ f  is medium

E( , & )q q  is large υ f  is small

Table 2. Takagi-Sugeno fuzzy system for the acrobot.

Rule If Then

1 z is larger than c1 &x A x b= +1 1τ
2 z is smaller than c2 &x A x b= +2 2τ

Table 3. The local linear controllers.

Rule If Then

1 z is larger than c1 τ = −f x1

2 z is smaller than c2 τ = −f x2

Table 4. Parameters of the acrobot for simulation.

mi [kg] Li [m] Lgi [m] Ii [ Nm2 ]

Link 1 1 1 0.5 0.083

Link 2 1 2 1 0.33


