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Abstract

This paper presents necessary and sufficient conditions for the existence of a Lyapunov

function in the Lur’e form that guarantees the absolute stability of a Lur’e control system

with multiple nonlinearities. It simplifies the existence problem to one of solving a set

of linear matrix inequalities (LMIs). If these inequalities are feasible, the free parameters

in the Lyapunov function, such as the positive definite matrix and the coefficients of the

integral terms, are given by the solution of the LMIs. Otherwise, there does not exist any

Lyapunov function in the Lur’e form. Necessary and sufficient conditions are also obtained

for the robust absolute stability of time-varying structured uncertain systems.

Keywords: Lur’e control systems, absolute stability, robustness, Lyapunov function, lin-

ear matrix inequality (LMI).

1 Introduction

The absolute stability of Lur’e control systems has been discussed by many researchers. Most

of their results were obtained by using the Popov frequency domain criteria (e.g., [4,8,11,13]),

the extended Popov frequency domain criteria (e.g., [12, 14]), or the Lyapunov function in the

Lur’e form (e.g., [5, 20]). It is difficult to deal with systems with multiple nonlinearities using

the Popov criteria since the criteria are not geometrically intuitive and cannot be examined by
∗Corresponding author. Tel:86-731-8877480. E-mail address: heyong08@yahoo.com.cn
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illustration; and the extended Popov frequency domain criteria in [12] are only sufficient condi-

tions for systems with multiple nonlinearities. For the method employing a Lyapunov function

in the Lur’e form, the necessary and sufficient conditions for the existence of a Lyapunov func-

tion that have been obtained so far are for Lur’e control systems with multiple nonlinearities

in a bounded sector [5, 20]. However, they are only existence conditions, and are not solvable.

Furthermore, the criteria for examining absolute stability depend on the selection of free pa-

rameters, such as a positive definite matrix and the coefficients of integral terms. Since those

parameters cannot be obtained by analytical or numerical methods, the criteria are not very

practical. For example, the fact that the appropriate parameters cannot be found does not nec-

essarily mean that there does not exist a Lyapunov function in the Lur’e form that guarantees

the absolute stability of the system.

Sufficient conditions for the existence of a Lyapunov function in the Lur’e form that guar-

antees the absolute stability of Lur’e control systems have been found by using a linear matrix

inequality (LMI) and the S-procedure [1]. Moreover, the free parameters, such as the positive

definite matrix and the coefficients of the integral terms of the Lyapunov function, can be ob-

tained from the solution of the LMI. These conditions are also necessary if there is only a single

nonlinearity in the system. Unfortunately, they are only sufficient conditions if there is more

than one nonlinearity due to the losslessness of the S-procedure [9].

For the robust absolute stability of various uncertain Lur’e control systems, many sufficient

conditions have been derived based on the Popov frequency domain criteria and a method

employing a Lyapunov function in the Lur’e form [2, 6, 7, 10, 15–18]. Regarding the issue of

robust absolute stability, the same difficulty is encountered for uncertain systems with multiple

nonlinearities as for certain systems. And there are few results on the robust absolute stability

of Lur’e control systems with time-varying structured uncertainties.

This paper discusses the problem of the existence of a Lyapunov function in the Lur’e form

that guarantees the absolute stability of Lur’e control systems with multiple nonlinearities in

a bounded sector. The problem is converted to one of solving a set of LMIs, and necessary

and sufficient conditions for the existence problem are presented. It is shown that there exists

a Lyapunov function in the Lur’e form that guarantees absolute stability if those LMIs are

feasible. Moreover, the free parameters, such as the positive definite matrix and the coefficients

of the integral terms of the Lyapunov function, are given by the solution of the LMIs. And if

the LMIs are false, no such Lyapunov function exists. Furthermore, the results obtained are

extended to Lur’e control systems with time-varying structured uncertainties; and necessary and
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sufficient conditions for their robust absolute stability are obtained by using the necessary and

sufficient conditions given in [19]. The LMIs can be solved using the Matlab LMI toolbox [3].

This paper is organized as follows: Section 2 provides preliminary information needed in

the rest of the paper. Section 3 presents necessary and sufficient conditions for the absolute

stability of Lur’e control systems. Section 4 discusses robust absolute stability criteria for

uncertain systems. Section 5 presents some numerical examples that illustrate the effectiveness

of the proposed method. And some conclusions are drawn in Section 6.

2 Preliminaries

Consider a Lur’e control system with multiple nonlinearities and uncertainties.

S :





ẋ = (A +4A(t))x + (B +4B(t))f(σ),

σ = CT x,
(1)

where x ∈ Rn is the state; f(σ) = [f1(σ1) f2(σ2) · · · fm(σm)]T ∈ Rm×1 is a nonlinear function;

A ∈ Rn×n, B = [b1 b2 · · · bm] ∈ Rn×m, C = [c1 c2 · · · cm] ∈ Rn×m and cj (j = 1, 2, · · · , m)

are linear-independent; and σ = [σ1 σ2 · · · σm]T ∈ Rm×1.

The nominal system of S is given by

S0 :





ẋ = Ax + Bf(σ),

σ = CT x.
(2)

In (1) and (2), the nonlinearities fj(σj) satisfy

fj(σj) ∈ Kj [0, kj ] = {fj(σj)| fj(0) = 0, and 0 ≤ σjfj(σj) ≤ kjσ
2
j for σj 6= 0 } (3)

for 0 < kj < +∞, j = 1, 2, · · · ,m.

The uncertainties are assumed to be of the following form:

[∆A(t) ∆B(t)] = DF (t) [Ea Eb] , (4)

where D,Ea and Eb are known real constant matrices with appropriate dimensions; and F (t)

is an unknown real, time-varying, appropriately dimensioned matrix with Lebesgue-measurable

elements satisfying

‖F (t)‖ ≤ 1, ∀t, (5)
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where ‖ · ‖ is the Euclidean norm. For simplicity,

Ā = A + ∆A(t) and B̄ = B + ∆B(t) (6)

are used in the rest of this paper.

Definition 1 Assume that the sector is bounded by

K = diag ( k1, k2, · · · , km ) . (7)

The system S (or the nominal system S0) is said to be robustly absolutely stable (or absolutely

stable) in the sector if S (or S0) is globally robustly stable (or globally asymptotically stable) for

fj(σj) ∈ Kj [0, kj ] (j = 1, 2, · · · ,m).

Construct the following Lyapunov function in the Lur’e form:

V (x) = xT Px + 2
m∑

j=1

λj

∫ σj

0

fj(σj)dσj , (8)

where P = PT > 0 and λj ≥ 0 (j = 1, 2, · · · ,m) need to be determined. If the function V (x)

in (8) satisfies

V̇S < 0 (or V̇S0 < 0), for x 6= 0 and any fj(σj) ∈ Kj [0, kj ], j = 1, 2, · · · ,m, (9)

where V̇S (or V̇S0) is the derivative of the Lyapunov function with respect to time for S (or S0),

then S (or S0) is robustly absolutely stable (or absolutely stable) in the sector bounded by (7).

This is stated in the following lemma.

Lemma 1 [5,20] For a nominal system S0 with m ≥ 2, the necessary and sufficient conditions

for inequality (9) to hold are

(a) V̇S0 < 0 for x 6= 0, f1(σ1) = α1σ1 (α1 ∈ {0, k1}), and fj(σj) ∈ Kj [0, kj ] (j = 2, 3, · · · ,m);

and

(b) V̇S0 < 0 for x 6= 0, f1(σ1) ∈ K1[0, k1], and fj(σj) = 0 (j = 2, 3, · · · , m).

Proof. See the appendix.

From the procedure for the proof of Lemma 1, it can be seen that the conclusion is also

true when A and B are time-varying. So, Lemma 1 holds for the uncertain system S as well.

The S-procedure [1,9] plays a very important role in this study. It is given in the following

lemma.
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Lemma 2 [1, 9] (S-procedure) Let Ti ∈ Rn×n (i = 0, 1, · · · , p) be symmetric matrices. The

conditions on Ti (i = 0, 1, · · · , p),

ζT T0ζ > 0 for all ζ 6= 0 such that ζT Tiζ ≥ 0 (i = 1, 2, · · · , p), (10)

hold if there exist τi ≥ 0 (i = 1, 2, · · · , p) such that

T0 −
p∑

i=1

τiTi > 0. (11)

When p = 1, the existence of a ζ0 such that ζT
0 T1ζ0 > 0 is also a necessary condition.

Boyd et al. [1] used the S-procedure to derive a sufficient condition (Note that it is also

necessary when p = 1.). The following lemma presents a different version of this condition.

Lemma 3 Inequality (9) holds for the nominal system S0 if there exist P = PT > 0, T =

diag(t1, t2, · · · , tm) ≥ 0 and Λ = diag(λ1, λ2, · · · , λm) ≥ 0 such that the LMI

Φ =


 AT P + PA PB + AT CΛ + CKT

BT P + ΛCT A + TKCT ΛCT B + BT CΛ− 2T


 < 0 (12)

is feasible, where K is given by (7). This is also a necessary condition when m = 1.

To obtain necessary and sufficient conditions for a system with time-varying structured

uncertainties, the following lemma is needed to deal with the uncertainties.

Lemma 4 [19] For given matrices Q = QT ,H, E and R = RT > 0 of appropriate dimensions,

Q + HF (t)E + ET FT (t)HT < 0

holds for all F (t) satisfying FT (t)F (t) ≤ R, if and only if there exists some ε > 0 such that

Q + εHHT + ε−1ET RE < 0.

3 Absolute Stability

Lemma 3 gives a sufficient condition for the existence of a Lyapunov function in the Lur’e form

that guarantees the absolute stability of Lur’e control systems with multiple nonlinearities.

Since the S-procedure is directly employed in this lemma, it is generally conservative. This

section presents more practical necessary and sufficient conditions.
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Let

Γ1∼m = diag(α1, α2, · · · , αm).

Then,

D1∼m
j = {Γ1∼m|αi = 0 for i ≥ j, αi ∈ {0, ki} for i < j, (i = 1, 2, · · · ,m)}, j = 1, 2, · · · ,m

(13)

contains 2j−1 elements. First, we have the following theorem for a system without uncertainties.

Theorem 1 For the nominal system S0 with m ≥ 1, the necessary and sufficient condition

for (9) is that V̇S0 < 0 holds for all j = 1, 2, · · · ,m and Γ1∼m ∈ D1∼m
j when x 6= 0, fi(σi) =

αiσi (i = 1, 2, · · · , m, i 6= j), and fj(σj) ∈ Kj [0, kj ].

Proof. The inductive method is used to prove this theorem. From Lemma 1, the theorem

holds for m = 1. Suppose that it holds for m = ρ. Now, consider the system with ρ nonlinearities

ẋ = Ax +
ρ+1∑

j=2

bjfj(σj). (14)

Let D
2∼(ρ+1)
j = {Γ2∼(ρ+1)|αi = 0 for i ≥ j, αi ∈ {0, ki} for i < j, (i = 2, 3, · · · , ρ + 1)}

(j = 2, 3, · · · , ρ + 1). The necessary and sufficient condition for (9) is that V̇S0 < 0 holds for

all j = 2, 3, · · · , ρ + 1 and Γ2∼(ρ+1) ∈ D
2∼(ρ+1)
j when x 6= 0, fi(σi) = αiσi (i = 2, 3, · · · , ρ + 1,

i 6= j), and fj(σj) ∈ Kj [0, kj ].

(9) holds if and only if conditions (a) and (b) in Lemma 1 hold for m = ρ+1. The necessary

and sufficient condition for condition (b) is that V̇S0 < 0 holds for any Γ1∼(ρ+1) ∈ D
1∼(ρ+1)
1 =

{diag{0, 0, · · · , 0}} when x 6= 0, fi(σi) = αiσi (i = 2, 3, · · · , ρ + 1), and f1(σ1) ∈ K1[0, k1].

The necessary and sufficient conditions for condition (a) can be divided into two cases:

(i) If α1 = 0 and f1(σ1) = 0, then S0 is given by Eq. (14). Let

D̄
1∼(ρ+1)
j = {Γ1∼(ρ+1))|α1 = 0, Γ2∼(ρ+1) ∈ D

2∼(ρ+1)
j } (j = 2, 3, · · · , ρ + 1).

The necessary and sufficient condition for (9) is that V̇S0 < 0 holds for all j = 2, 3, · · · , ρ + 1

and Γ1∼(ρ+1) ∈ D̄
1∼(ρ+1)
j when x 6= 0, fi(σi) = αiσi (i = 1, 2, · · · , ρ + 1, i 6= j), and fj(σj) ∈

Kj [0, kj ].

(ii) If α1 = k1 and f1(σ1) = k1σ1, then S0 can be described by

ẋ = Ax + k1b1σ1 +
ρ+1∑

j=2

bjfj(σj). (15)
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Let

D̂
1∼(ρ+1)
j =

{
Γ1∼(ρ+1)|α1 = k1, Γ2∼(ρ+1) ∈ D

2∼(ρ+1)
j

}
; j = 2, 3, · · · , ρ + 1.

The necessary and sufficient condition for (9) is that V̇S0 < 0 holds for all j = 2, 3, · · · , ρ + 1

and Γ1∼(ρ+1) ∈ D̂
1∼(ρ+1)
j when x 6= 0, fi(σi) = αiσi (i = 1, 2, · · · , ρ + 1, i 6= j), and fj(σj) ∈

Kj [0, kj ].

As a result,

D
1∼(ρ+1)
j =





D
1∼(ρ+1)
1 , j = 1;

D̄
1∼(ρ+1)
j

⋃
D̂

1∼(ρ+1)
j , j = 2, 3, · · · , ρ + 1.

(16)

So, conditions (a) and (b) in Lemma 1 are equivalent to the case where V̇S0 < 0 holds for all

j = 1, 2, · · · , ρ + 1 and Γ1∼(ρ+1) ∈ D
1∼(ρ+1)
j when x 6= 0, fi(σi) = αiσi (i = 1, 2, · · · , ρ + 1,

i 6= j), and fj(σj) ∈ Kj [0, kj ]. Thus, the theorem also holds for m = ρ + 1.

Theorem 1 gives the necessary and sufficient conditions for (9) by converting multiple

nonlinearities into a simple form with only a single nonlinearity. The following theorem presents

the conditions in the form of an LMI. For simplicity, Γ1∼m is abbreviated as Γ hereafter; and

we assume that

A(Γ) := A + BΓCT and P (Γ) := P + CΛΓCT . (17)

Theorem 2 The necessary and sufficient conditions for the existence of the Lyapunov function

V (x) in (8) satisfying (9) that ensures that the system S0 is absolutely stable in the sector

bounded by (7) are that there exist P = PT > 0, tΓ ≥ 0 and λj ≥ 0 such that the following LMI

is feasible for all Γ ∈ D1∼m
j (j = 1, 2, · · · ,m):

Hj(Γ) =


 AT (Γ)P (Γ) + P (Γ)A(Γ) P (Γ)bj + λjA

T (Γ)cj + tΓkjcj

bT
j P (Γ) + λjc

T
j A(Γ) + tΓkjc

T
j 2λjc

T
j bj − 2tΓ


 < 0. (18)

Proof. Consider the case where Γ ∈ D1∼m
j , fi(σi) = αiσi and fj(σj) ∈ Kj [0, kj ] (i, j =

1, 2, · · · ,m, i 6= j). S0 is given by

S̃ : ẋ = Ax +
m∑

i=1

bifi(σi) = Ax +
m∑

i=1
i 6=j

biαiσi + bjfj(σj)

= Ax +
m∑

i=1
i 6=j

biαic
T
i x + bjfj(σj) = A(Γ)x + bjfj(σj),

(19)
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and the Lyapunov function is

V (x) = xT Px + 2
m∑

i=1
i 6=j

λi

∫ σi

0

αiσidσi + 2λj

∫ σj

0

fj(σj)dσj

= xT Px +
m∑

i=1
i 6=j

λiαiσ
2
i + 2λj

∫ σj

0

fj(σj)dσj

= xT Px +
m∑

i=1
i 6=j

λiαix
T cic

T
i x + 2λj

∫ σj

0

fj(σj)dσj

= xT P (Γ)x + 2λj

∫ σj

0

fj(σj)dσj .

(20)

To calculate the derivative of V (x) for Eq. (19), the inequality

V̇S̃ =
[
xT fT

j (σj)
]

 AT (Γ)P (Γ) + P (Γ)A(Γ) P (Γ)bj + λjA

T (Γ)cj

bT
j P (Γ) + λjc

T
j A(Γ) 2λjc

T
j bj





 x

fj(σj)


 < 0 (21)

must be true for x 6= 0 under the condition (3). On the other hand, condition (3), fj(σj) ∈
Kj [0, kj ] (j = 1, 2, · · · , m), is equivalent to

fj(σj)(fj(σj)− kjc
T
j x)) ≤ 0. (22)

This yields

{(x, fj(σj))|x 6= 0, fj(σj) ∈ Kj [0, kj ]} = {(x, fj(σj))|x 6= 0 or fj(σj) 6= 0, fj(σj) ∈ Kj [0, kj ]} ,

j = 1, 2, · · · ,m.

(23)

Since there is only a single nonlinear term in Eq. (19), it is clear from Lemma 2 (S-

procedure) that the necessary and sufficient conditions for (21) are that there exists tΓ ≥ 0

such that LMI (18) is feasible.

Remark 1 [5, 20] presented only existence conditions that are not solvable. The criteria for

absolute stability depend on the selection of free parameters, such as the positive definite matrix

and the coefficients of the integral terms. However, it is not easy to determine the parameters

by existing methods. In contrast, the free parameters in Theorem 2 can easily be obtained by

solving LMI (18). So, Theorem 2 is more practical.

Remark 2 Although the free parameters in the criteria in [1] can be derived from the solution

of an LMI, they are only sufficient conditions for the existence of a Lyapunov function in

the Lur’e form that guarantees the absolute stability of a Lur’e control system with multiple

nonlinearities. On the other hand, the conditions in Theorem 2 are necessary, even when there

is more than one nonlinearity.
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4 Robustness for Absolute Stability

For a time-varying structured uncertain system, S, the following sufficient condition is derived

by directly employing the S-procedure. The uncertainties are dealt with by using Lemma 4.

Theorem 3 System S is robustly absolutely stable in a sector bounded by K = diag(k1, k2, · · · , km)

if there exist P = PT > 0, Λ = diag(λ1, λ2, · · · , λm) ≥ 0, T = diag(t1, t2, · · · , tm) ≥ 0 and ε > 0

such that the following LMI is feasible:



AT P + PA + εET
a Ea PB + AT CΛ + CKT + εET

a Eb PD

BT P + ΛCT A + TKCT + εET
b Ea ΛCT B + BT CΛ− 2T + εET

b Eb ΛCT D

DT P DT CΛ −εI


 < 0. (24)

Proof. If we replace A and B in (12) with A + DF (t)Ea and B + DF (t)Eb, respectively,

then (12) for S is equivalent to the following condition:

Φ +


 PD

ΛCT D


 F (t)

[
Ea Eb

]
+


 ET

a

ET
b


 FT (t)

[
DT P DT CΛ

]
< 0. (25)

By Lemma 4, a necessary and sufficient condition guaranteeing (12) for S is that there exists a

positive number ε > 0 such that

Φ + ε−1


 PD

ΛCT D




[
DT P DT CΛ

]
+ ε


 ET

a

ET
b




[
Ea Eb

]
< 0. (26)

Applying the Schur complement shows that (26) is equivalent to (24).

The conditions in Theorem 3 for the robust absolute stability of system S with multiple

nonlinearities are conservative because they are only sufficient conditions. To reduce the con-

servatism, the following theorem is derived based on the necessary and sufficient conditions

obtained in the previous section.

Theorem 4 The necessary and sufficient conditions for the existence of the Lyapunov function

V (x) in (8) satisfying (9) that ensures that the system S is robustly absolutely stable in the sector

bounded by (7) is that, for all j = 1, 2, · · · , m and Γ ∈ D1∼m
j , there exist P = PT > 0, λj ≥ 0,

tΓ ≥ 0 and εΓ ≥ 0 such that the following LMI is feasible:



AT (Γ)P (Γ) + P (Γ)A(Γ) + εΓET
a (Γ)Ea(Γ) Ψ12 + εΓET

a (Γ)Ebj P (Γ)D

ΨT
12 + εΓET

bjEa(Γ) 2λjc
T
j bj + εΓET

bjEbj − 2tΓ λjc
T
j D

DT P (Γ) λjD
T cj −εΓI


 < 0,

(27)

where Ea(Γ) := (Ea + EbΓCT )T (Ea + EbΓCT ) and Ψ12 = P (Γ)bj + λjA
T (Γ)cj + tΓkjcj.
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Proof. Let b̄j be the j-th column of B̄. From Theorem 2, the conditions in (18) for system

S are equivalent to the condition that there exist P = PT > 0, λj ≥ 0 and tΓ ≥ 0, for all

j = 1, 2, · · · , m and Γ ∈ D1∼m
j such that the following holds:

H̄j(Γ) =


 ĀT (Γ)P (Γ) + P (Γ)Ā(Γ) P (Γ)b̄j + λjĀ

T (Γ)cj + tαkjcj

b̄T
j P (Γ) + λjc

T
j Ā(Γ) + tΓkjc

T
j 2λjc

T
j b̄j − 2tΓ


 < 0. (28)

Replacing Ā(Γ) and b̄j in (28) with A(Γ)+DF (t)Ea(Γ) and bj +DF (t)Ebj , respectively, allows

us to rewrite H̄j(Γ) as

H̄j(Γ) = Hj(Γ)+


 P (Γ)D

λjc
T
j D


 F (t)

[
Ea(Γ) Ebj

]
+


 ET

a (Γ)

ET
bj


 FT (t)

[
DT P (Γ) λjD

T cj

]
,

(29)

where Hj(Γ) is defined in (18). From Lemma 4 and the Schur complement, H̄j(Γ) < 0 if and

only if LMI (27) is feasible.

5 Examples

Example 1: Consider the nominal system S0 with

A =


 −2 0

2 −4


 , B =


 0 −2

−2 0


 , C =


 1 0

0 1


 , (30)

and k1 = 1 and k2 = 10.

Since m = 2,

D1∼2
1 = {diag(0, 0)},

D1∼2
2 = {diag(0, 0), diag(k1, 0)}.

(31)

Solving LMI (18) yields the following parameters for the Lyapunov function:

P =


 0.3863 0.0423

0.0423 0.1247


 , λ1 = 0.0174, λ2 = 0.7006.

So, S0 is absolutely stable.

If the sector of one nonlinearity is fixed by setting k1 = 1, then the maximum sector bound

on the other nonlinearity that guarantees the absolutely stability of S0 is found to be k2 = 17.48

by solving LMI (18). Specifically, solving LMI (18) yields

P =


 0.5973 −0.5932

−0.5932 1.0959


× 104, λ1 = 0.8003, λ2 = 1.1324× 104.
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On the other hand, LMI (12) in Lemma 3 no longer holds for k1 = 1 and k2 = 16. This

demonstrates the conservatism of Lemma 3, which deals with absolute stability by applying

the S-procedure directly to a system with multiple nonlinearities. In addition, the maximum

bound on k1 can also be obtained by fixing k2 in the same manner.

Now let’s consider an example of the uncertain system S.

Example 2: The system matrices A,B and C are the same as those in (30). The uncer-

tainties ∆A(t) and ∆B(t) are

‖∆A(t)‖ ≤ 0.5 and ‖∆B(t)‖ ≤ 0.05.

And k1 = 1 and k2 = 6.46.

These uncertainties can be represented in the form of (4) with

D =


 1 0

0 1


 , Ea =


 0.5 0

0 0.5


 , Eb =


 0.05 0

0 0.05


 .

Solving LMI (27) yields

P =


 0.5113 −0.4547

−0.4547 1.2904


× 104, λ1 = 4, λ2 = 8.5467× 103.

So, S is robustly absolutely stable. At the same time, LMI (24) in Theorem 3 is found to be

not feasible for k1 = 1 and k2 = 6.14. This also demonstrates that it is conservative to use the

S-procedure to deal directly with multiple nonlinearities in uncertain systems.

6 Conclusions

This paper presents the necessary and sufficient conditions for the existence of a Lyapunov

function in the Lur’e form that guarantees the absolute stability of Lur’e control systems with

multiple nonlinearities. The existence problem is converted to a simple one of solving a set

of LMIs. It was shown that, if the LMIs are feasible, the positive definite matrix and the

coefficients of the integral terms of the Lyapunov function are given by the solution of those

LMIs. And a Lyapunov function does not exist if the LMIs are not feasible. Furthermore,

it was shown that the maximum bounded sector can be found if a Lyapunov function in the

Lur’e form exists, which ensures the absolute stability of the system. Finally, less conservative

necessary and sufficient conditions were obtained for the robust absolute stability of uncertain

systems.
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Appendix A. Proof of Lemma 1

This appendix gives the proof of Lemma 1, which was originally shown in [20].

A simple calculation yields

−V̇S0 =


 ξ

x




T 
 −W −UT

−U G





 ξ

x


 , (32)

where

ξ = col(f1(σ1), · · · , fm(σm)),

W =
1
2
(ΛCT B + BT CΛ),

G = −(AT P + PA),

U = (u1, u2, · · · , um), uj = Pbj +
1
2
λjA

T cj , j = 1, 2, · · · ,m.

Without loss of generality, in the proof of Lemma 1 we can assume σj = xj . In fact, since

cj (j = 1, 2, · · · , m) are linear-independent, the system S0 can be transformed into the above

form by means of a nonsingular linear transformation.

Letting σ̄ = col(σ2, · · · , σm), x̄ = col(xm+1, · · · , xn), and x = col(σ1, σ̄, x̄) allows us to

represent W,U, and G as

W =


 w11 WT

21

W21 W22


 , U =




u11 U12

U21 U22

U31 U32


 , G =




g11 GT
21 GT

31

G21 G22 GT
32

G31 G32 G33


 ,

where w11, u11 and g11 are scalars, W21, U21 ∈ R(m−1)×1, U12 ∈ R1×(m−1), W22, U22, G22 ∈
R(m−1)×(m−1), U31, G31 ∈ R(n−m)×1, U31, G32 ∈ R(n−m)×(m−1), and G33 ∈ R(n−m)×(n−m).

We further denote

K̄ = diag(µ2, · · · , µm),

I(µ1, · · · , µm) =


−w11µ
2
1 − 2u11µ1 + g11 −µ1(UT

21 + WT
21K̄) + GT

21 − U12K̄ −µ1U
T
31 + GT

31

−µ1(U21 + K̄W21) + G21 − K̄UT
12 G22 − K̄W22K̄ − K̄UT

22 − U22K̄ GT
32 − K̄UT

32

−µ1U31 + G31 G32 − U32K̄ G33


 .

Preparatory to proving Lemma 1, we give the following lemmas.
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Lemma 5 A necessary and sufficient condition for function V (x) of (8) to satisfy condition

(9) is that

detI(µ1, · · · , µm) > 0, for any µj ∈ [0, kj ] (j = 1, · · · ,m). (33)

Proof. Necessity: For any µj ∈ [0, kj ] (j = 1, · · · ,m), if we set fj(σj) = µjσj ∈ Kj [0, kj ],

then it follows that V̇S0 < 0, that is,

−V̇S0 =




µ1σ1

K̄σ̄

σ1

σ̄

x̄




T 


−w11 −WT
21 −u11 −UT

21 −UT
31

−W21 −W22 −UT
12 −UT

22 −UT
32

−u11 −U12 g11 GT
21 GT

31

−U21 −U22 G21 G22 GT
32

−U31 −U32 G31 G32 G33







µ1σ1

K̄σ̄

σ1

σ̄

x̄




= xT I(µ1, · · · , µm)x > 0, ∀‖x‖ 6= 0.

Hence,

I(µ1, · · · , µm) > 0.

Consequently,

detI(µ1, · · · , µm) > 0.

Sufficiency: Assume that

detI(µ1, · · · , µm) > 0 for any µj ∈ [0, kj ] (j = 1, · · · ,m).

Since I(0, · · · , 0) = G > 0,

I(µ1, 0, · · · , 0)


 1

1


 = I(0, 0, · · · , 0)


 1

1


 > 0

holds1. detI(µ1, 0, · · · , 0) > 0 gives

I(µ1, 0, · · · , 0) > 0 for any µ1 ∈ [0, k1].

From

I(µ1, µ2, 0, · · · , 0)


 2

2


 = I(µ1, 0, 0, · · · , 0)


 2

2


 > 0

and

detI(µ1, µ2, 0, · · · , 0) > 0,

1T

(
i

j

)
denotes a matrix obtained by deleting the i-th row and the j-th column of the matrix T .
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we obtain I(µ1, µ2, 0, · · · , 0) > 0 for any µj ∈ [0, kj ] (j = 1, 2). Analogously, it follows that

I(µ1, µ2, · · · , µm) > 0, for any µj ∈ [0, kj ] (j = 1, 2, · · · ,m). (34)

Letting

µj(σj) =





fj(σj)/σj , σj 6= 0,

0, σj = 0,

for any fj(σj) ∈ Kj [0, kj ] (j = 1, 2, · · · ,m), we have

fj(σj) = µj(σj)σj , and µj(σj) ∈ [0, kj ] (j = 1, 2, · · · ,m).

Therefore,

−V̇S0 = xT I(µ1(σ1), · · · , µm(σm))x > 0, ∀‖x‖ 6= 0.

That is, V̇S0 < 0. This completes the proof of Lemma 5.

We obtain Lemma 6 in a similar way.

Lemma 6 If conditions (a) and (b) in Lemma 1 hold, then

(a) I(α1, µ2, · · · , µm) > 0 (α1 = 0, k1) for any µj ∈ [0, kj ] (j = 2, · · · ,m),

(b) I(µ1, 0, · · · , 0) > 0 for any µ1 ∈ [0, k1].

Lemma 7 Let S be an r × r nonsingular symmetric matrix; let β and δ be r-dimensional

vectors; and let µ, a, b and c be real numbers. If we denote

Q(µ) =


 aµ2 + 2bµ + c µδT + βT

µδ + β S


 , R =




a
[
b δT

]

 b

δ


 Q(0)


 ,

then we have

detQ(µ) = µ2detR


 2

2


 + 2µdetR


 1

2


 + detR


 1

1


 ,

∆ =


detR


 1

2







2

−

detR


 2

2








detR


 1

1





 = −(detR)(detS)
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Proof.

detQ(µ) = (detS)[aµ2 + 2bµ + c− (µδT + βT )S−1(µδ + β)]

= µ2(detS)(a− δT S−1δ) + 2µ(detS)(b− δT S−1β) + (detS)(c− βT S−1β)

= µ2 detR


 2

2


 + 2µdetR


 1

2


 + detR


 1

1


 .

∆ = (detS)2[(b− δT S−1β)]2 − (a− δT S−1δ)(c− βT S−1β)]

= −(detS)


(detS) det


 a− δT S−1δ b− δT S−1β

b− δT S−1β c− βT S−1β





 = −(detR)(detS).

Lemma 8 If conditions (a) and (b) in Lemma 1 hold, then

detR(K̄) ≤ 0 for any µj ∈ [0, kj ] (j = 2, · · · ,m),

where

R(K̄) =




−w11

[−u11 − UT
21 −WT

21K̄ − UT
31

]



−u11

−U21 − K̄W21

−U31


 I(0, µ2, · · · , µm)




.

Proof. If λ1 = 0, then w11 = λ1c
T
1 b1 = 0. From I(0, µ2, · · · , µm) > 0, we obtain

detR(K̄) ≤ 0.

If λ1 > 0, it is easy to show that detR(K̄) ≤ 0. In addition, if detR(K̄) > 0, then

R(K̄) > 0.

Now we construct a linear system of constant coefficients with n + 1 variables as follows:

Š0 :





dx

dt
= Ax +

m∑

j=2

µjbjxj + b1ξ1,

dξ1

dt
= cT

1


Ax +

m∑

j=2

µjbjxj + b1ξ1


 ,

(35)

and set

V1(ξ1, x) = xT Px +
1
2

m∑

j=2

µjλjx
2
j +

1
2
λ1ξ

2
1 .

Then, we obtain

−V̇1|Š0
=


 ξ1

x




T

R(K̄)


 ξ1

x


 > 0, ∀ ‖x‖+ |ξ1| 6= 0,
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which contradicts the nonasymptotic stability of the zero solution of system (35). This com-

pletes the proof.

Now, we are ready prove Lemma 1.

Proof of Lemma 1:

Necessity: The necessity is clear and thus omitted.

Sufficiency: First, we show that (33) holds. If it does not, there exists µj0 ∈ [0, kj ] (j =

1, 2, · · · ,m) such that detI(µ10, · · · , µm0) ≤ 0. Then, from Lemma 6, it follows that detI(0, µ20, · · · , µm0) >

0. And so there exists µ̄1 ∈ [0, k1] such that

detI(µ̄1, µ20, · · · , µm0) = 0. (36)

Let K̄0 = diag(µ20, · · · , µm0), and denote

a(ε) = detR(εK̄0)


 2

2


 , b(ε) = detR(εK̄0)


 1

2


 , c(ε) = detR(εK̄0)


 1

1


 .

Then, a(ε), b(ε) and c(ε) are polynomials in ε. From Lemmas 7 and 8, we have

detI(µ̄1, εµ20, · · · , εµm0) = a(ε)µ2
1 + 2b(ε)µ1 + c(ε)

and

∆(ε) = b2(ε)− a(ε)c(ε) = −[detR(εK̄0)][detI(0, εµ20, · · · , εµm0)] ≥ 0, ∀ε ∈ [0, 1].

Since a(1) 6= 0 (If not, from (36) it follows that

detI(0, εµ20, · · · , εµm0) ≥ 0 or detI(µ1, εµ20, · · · , εµm0) ≥ 0,

which contradicts Lemma 6, then from (36), we have

µ̄1 =
−b(1) +

√
b2(1)− a(1)c(1)
a(1)

or µ̄1 =
−b(1)−

√
b2(1)− a(1)c(1)
a(1)

.

Without loss of generality, we suppose that the above holds. Let

P (ε) =
−b(ε) +

√
b2(ε)− a(ε)c(ε)
a(ε)

. (37)

Then, P (1) = µ̄1, and

detI(P (ε), εµ20, · · · , εµm0) = a(ε)P 2(ε) + 2b(ε)P (ε) + c(ε) = 0.
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From Lemma 6 ,

P (ε) 6= 0 and P (ε) 6= k1, for ε ∈ [0, 1].

Since a(ε) is a non-zero polynomial in ε, it has finite zero points only in [0, 1]. So, we can

assume that its zero points are

0 ≤ ε1 < ε2 < · · · < εs−1 < εs < 1.

Lemma 8 says that P (ε) is continuous on (εs, 1]. And since P (ε) 6= 0, P (ε) 6= k1, and

0 < P (1) = µ̄1 < k1, we have

0 < P (ε) < k1, ε ∈ (εs, 1].

Therefore, lim
ε→εs+0

P (ε) = Ps, and 0 < Ps < k1.

From (37), it follows that lim
ε→εs

P (ε) = Ps.

Define P (εs) = Ps. Then, P (ε) is continuous on ε ∈ (εs−1, εs]. In the same way, we can

prove that

lim
ε→εs−1

P (ε) = Ps−1 and 0 < Ps−1 < k1.

Analogously, it follows that

P (0) ∈ [0, k1] for a(0) 6= 0 or lim
ε→0+

P (ε) = P0 ∈ [0, k1] for a(0) = 0.

Assume that

µ1 =





P (0), a(0) 6= 0,

P0, a(0) = 0,

Then, µ1 ∈ [0, k1] and detI(µ1, 0, · · · , 0), which contradicts Lemma 6. This completes the

proof.
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