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Abstract: This paper proposes a new approach to disturbance estimation based on a curvature model to 

improve the rejection performance of disturbances in a repetitive control system. The main feature is that the 
stability of the repetitive control system is guaranteed when the estimated disturbance is incorporated directly 
into the designed repetitive control law. Simulation results show that disturbances are rejected efficiently 
when this approach is used. 
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 摘要：为了改善重复控制系统中的扰动抑制性能，本文提出一种基于曲率模型的扰动估计新方法．该方法的

主要特点是扰动的估计值直接与重复控制规则结合也不影响重复控制系统的稳定性．仿真结果显示该方法可以有

效地抑制扰动． 
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1. Introduction 

Control systems that perform operations cyclically 
are subject to both periodic and non-periodic 
disturbances. For example, in noncircular cutting with 
a lathe, the position of the cutting tool has to track a 
given periodic signal. Such a system is affected by 
random disturbances and disturbances caused by the 
structure of the system. Repetitive control is a very 
useful strategy for tracking periodic reference inputs 
and rejecting periodic disturbances[1], [2]. However, a 
repetitive control system cannot readily reject 
non-periodic disturbances[3]. 

In this paper, a new approach to disturbance 

estimation based on a curvature model is proposed to 
improve the performance of non-periodic disturbance 
rejection in a repetitive control system. The 
characteristics of this method are that disturbances are 
reproduced satisfactorily even though the estimation 
model is very simple; the stability of the system is 
guaranteed when  disturbance estimation is directly 
incorporated into the repetitive control law; and no a 
priori information about disturbances, such as the pick 
value, is needed. 
2. Disturbance estimation 

The configuration of a conventional repetitive 
control system is shown in Fig. 1. The plant and the  
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Fig. 1. Conventional repetitive control system. 

 
repetitive controller are respectively given by 
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where Pn
P kx R∈)( , Kn

K kx R∈)( , R∈)(ky , 

R∈)(ku  and R∈)(kd  are the states of the plant, 

repetitive controller, output, control input and 
non-periodic disturbances, respectively. We assume 
that the repetitive controller has been designed so that 
the internal stability of the repetitive control system is 
guaranteed, and also make the following assumptions. 

Assumption 1: ),( PP BA  is controllable. 
Assumption 2: The disturbance )(kd  is bounded 

and smooth enough. 
Since an internal model of periodic signals, 

)1/(1 Lz −− , is contained in the repetitive controller, 

)(zK , perfect tracking and disturbance rejection is 

obtained for these signals. However, for non-periodic 
disturbances, good rejection performance can no 
longer be expected. Generally speaking, the peak 
value of the tracking error is proportional to the peak 
value of the disturbance. If some a priori information 
about disturbances, e.g. the pick value, is known, a 
nonlinear control law can be designed to reject the 
disturbances[4]. In this paper, we do not use such a 
priori information. The only assumption about the  
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Fig. 2. Proposed repetitive control system. 
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Fig. 3. Curvature circle model for disturbance 

estimation. 
 
disturbances is that the sampling frequency is high 
enough that the disturbances are smooth enough. 

Haskara, et. al. [5] have proposed a method that 
uses a linear model to estimate a disturbance. However, 
to obtain an accurate estimate might require a model 
with a very high order, and the calculations might be 
very complicated. To achieve better non-periodic 
disturbance rejection, Smith and Tomizuka [6] added a 
disturbance observer to a conventional repetitive 
control system; but the design is not simple. In this 
paper, a low-order nonlinear disturbance-estimation 
model called a curvature circle model is proposed for 
the estimation of disturbances, and is used to reduce 
the tracking error. The proposed repetitive control 
system is shown in Fig. 2. 

Curvature circle approximation, which is a good 
way to approximate a curve, is used to estimate the 
disturbance. If the curvature circle at k-1 is known, 
then the value on this circle at k can be taken as an 
estimate of the disturbance at k (see Fig. 3). This 
estimate has the following characteristics: 

1) The curvature circle shares the same tangent 
with the disturbance at k-1. 

2) The curvature circle has the same concavity or 
convexity as the disturbance at k-1. 

3) The curvature of the curvature circle equals that 
of the disturbance at k-1. 

So, the characteristics of the disturbance are reflected 
in the estimate; and by making use of them, the 
disturbance can effectively be suppressed. The details 
are given below. 

According to Assumption 1, there exists a 

nonsingular matrix PP nnT ×∈R  that converts the plant 
(1) into the following controllable canonical form: 
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Multiplying both sides of (3) by T
PB  gives 
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So, the disturbance )(kd  can be expressed as 
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T
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and the following equations hold: 









−−−−−=−
−−−−−=−

−−−−=−

).3()3()2()3(
),2()2()1()2(

),1()1()()1(

kukxDkxBkd
kukxDkxBkd

kukxDkxBkd

PP
T
P

PP
T
P

PP
T
P

 (6) 

For a sampling period, τ , if the first and second 
derivatives of the disturbance )(kd  at k-1 are 

approximated by 
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then the radius of the curvature circle, ρ, is 
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and the coordinates of the center of the curvature 
circle are 
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Thus, the disturbance estimate )(ˆ kd  is obtained from  
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Fig. 4. Optimal repetitive control system. 
 
the following lemma. 

Lemma 1. The disturbance estimate )(ˆ kd  is 

given by 
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where ρ, α and β are given by (8) and (9). 
Combining the designed repetitive control law 

with the disturbance estimate yields the control law 

 )(ˆ)()( kdkukuP −= . (11) 

The following theorem holds for this law. 
Theorem 1. The control law (11) guarantees the 

stability of the repetitive control system and 
suppresses disturbances when the sampling period, τ, 
is small enough. 

Proof: Omitted. 
3. Numerical example 

Consider the following second-order plant: 
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The sampling period and the number of steps of the 
repetitive controller are chosen to be 
 ,L 21s, 1.0 ==τ  (13) 

respectively. The periodic reference input 
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Fig. 5. Disturbances. 



is added. First, choosing 
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gives the optimal repetitive control law 
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The optimal repetitive control system is shown in Fig. 
4 [7]. 

The disturbance 
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which is non-periodic up to 27 s, was input (Fig. 5). 
The simulation results for the optimal system are 
shown in Fig. 6. In the steady state, the peak-to-peak 
value of the tracking error is about 1. The estimates of 
the disturbances obtained by the method proposed in 
this paper and the estimation error are shown in Fig. 7. 
It is clear from the figure that the estimates reproduce 
the disturbances satisfactorily. The simulation results 
for a control law that makes use of the estimates are 
shown in Fig. 8. A comparison of Figs. 6 and 8 reveals 
that the addition of disturbance estimation 
significantly reduces the tracking error. 
 
4. Conclusions 

This paper proposes a curvature circle 
approximation model for disturbance estimation to 
improve the rejection performance for non-periodic 
disturbances. Unlike other approaches, we do not  
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Fig. 6. Response of optimal repetitive control system. 
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Fig. 7. Estimates of the disturbances and the 

estimation error. 
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Fig. 8. Response of optimal repetitive control system 
with disturbance estimation. 
 
assume that any information about the disturbances, 
such as the pick value, is known. The main features of 
this method are: 1) the disturbances are reproduced 
satisfactorily even though the estimation model is very 
simple; and 2) the stability of the repetitive control 
system is guaranteed when disturbance estimation is 
incorporated directly into the designed repetitive 
control law. The validity of the proposed method has 
been demonstrated through simulations. 
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