
1.  INTRODUCTION

High precision and the desired command response
are very important requirements of constant-speed-
rotation control systems.  However, fluctuations in
the rotational speed, which are frequently caused by
position-dependent disturbances, have hindered all
efforts to improve the precision of such systems.  These
fluctuations are caused by such things as the non-
uniformity of the magnetic flux in DC motors, and
eccentricity in the structure of the rotation systems
and cutting force in noncircular cutting processes.

There are many reports on reducing such effects by
improving the mechanism (Gotou and Kobayashi,
1983; Murai et al., 1989) or using an active control
scheme (Kobayashi et al., 1990). Of particular interest
is the method developed by Kobayashi et al. (1990),
who considered position-dependent disturbances as
periodic functions of time for a given rotational speed,
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domain. However, that method was not efficient
enough when the speed setting was changed, though
it was very effective for a constant speed. So some
special techniques, such as a phase-locked loop, had
to be used to  maintain high control precision.

This paper proposes a  systematic approach, focusing
on the basic fact that this kind of disturbance constitutes
a periodic function of the rotational angle.  A new
concept called the “position domain” is first
introduced, and the design of the proposed control
system is carried out in the position domain instead
of the time domain so as to eliminate such disturbances
completely, regardless of the rotational speed.  Finally,
some experimental results are shown to demonstrate
the effectiveness of this approach.

The position-domain method was independently
proposed by Tsao et al. (1989) and She et al. (1990).
Tsao et al. (1989, 1991) used it to suppress the effect
of cutter runout on the maximum tangential cutting
force in face milling by actively varying the spindle
speed. However, in a previous study (She et al., 1990)
and also in the present one, it is used to make the
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effect of speed fluctuations as small as possible when
a constant-speed-rotation control system is perturbed
by position-dependent disturbances.

Notation and Definitions
        λ : delay operator ( = −z 1).
    RH∞ : set of real-rational functions in λ  which

have no poles within or on the unit circle.
    R[λ ]: ring of polynomials in λ (⊂ ∞RH ).
    Rm n× : set of m-row and n-column matrices.
G G Gj( ) ( )     ( ( )λ λ

φ π

φ
∞

≤ ≤
∞= ∈: sup )

0 2
e RH .

  a+( )λ : real monic polynomial (the coefficient of
the highest order is one) having no zeros
outside the unit circle in the complex plane.

  a– ( )λ : real polynomial having no zeros within or
on the unit circle in the complex plane.

  a a*( ) : ( )λ λ= −1 .

2.  SYSTEM MODELING IN THE POSITION
DOMAIN

In the problem considered here, the position-dependent
disturbances to be eliminated are periodic functions
of the position, or in other words the rotational angle,
which is defined as

θ ω: ( )= ∫ t dt
t

0
, (1)

where ω( )t  is the rotational speed. Since the
disturbances are based on the rotational angle, it is
clearly more convenient to formulate this problem in
terms of the rotational angle, rather than time. This
leads to the concept of the “position domain”, which
is defined as follows (She et al., 1990):
Definition: The position domain is a set in which
every element is a function of the rotational angle.

To obtain a model in the position domain, the following
condition for the transformation from the time domain
to the position domain must be satisfied.
Transformation condition: There exists a
transformation from the time domain to the position
domain if and only if the direction of rotation  is
unchanged.  Without loss of generality, if the direction
of rotation is designated the positive direction, then
the condition can be expressed as:

ω θ
( ) ;t

d

dt
= > ∀0     > 0t . (2)

Remark 1:  Condition (2) follows directly from the
inverse function theorem (Boothby, 1975). It
guarantees the existence of  the inverse function
t t: ( )= θ  of θ θ= ( )t .
Remark 2:  According to Condition (2), the rotational
angle θ is a monotonically increasing function of time
t. So the stability defined in the position domain is
the same as that defined in the time domain.

Throughout this paper, Condition (2) will be assumed
to be satisfied.

Consider a linear time-invariant rotation system with
two inputs and one output. The state–space description
in the time domain is given by

dx t

dt
Ax t Bu t

x t v t

( )
( ) ( )

( ) ( )

= +

+





ω( ) =t Ψ
, (3)

where
    u(t):  control input,
    v(t):  position-dependent disturbance,
    ω(t): rotational speed.

The following assumptions, which are standard in
repetitive control, are also assumed to be satisfied.
Assumption 1: ( , )A B  is stabilizable, and ( , )A Ψ  is
detectable.

Assumption 2:  
A B

Ψ 0

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
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 has no zeros on the unit

circle.

In view of (2), the relationship between the time domain
and the position domain can be summarized as
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According to this transformation, especially in the
position domain, the position-dependent disturbance
˜( )v θ  constitutes a periodic function with the period
being a constant. So, the effect of a disturbance on
the rotational speed should be eliminated by a repetitive
controller (Hara et al., 1988; Tomizuka et al., 1989)
with the same period as that of the disturbance.

Substituting (4) into (3), the model of the rotation
system in the position domain is:

˜ ( )
˜( )

˜( ) ˜( )

˜ ( ) ˜( ) ˜( )

ω θ θ
θ

θ θ

ω θ θ θ

dx

d
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+


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

u

=Ψ
. (5)

This model is nonlinear. One way to design a controller
based on linear system theory is to linearize (5) around
the equilibrium point ( ˜ ( ), ˜( ) / )ω θ θ θdx d  = ( , )ωr 0 .
Some simple calculations yield the following linear
model.
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where
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A
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B

r r

= = =
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,    ,    and Ψ Ψ  . (7)

The stabilizability and detectability are preserved
under the domain transformation. The reason is as
follows. If we let the Laplace operators corresponding
to the time domain and the position domain be st  and
s,  respectively, then the transfer function of the linear
(linearized) plants in the time domain and the position
domain are
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respectively. The corresponding poles and zeros are
given by
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Clearly, the poles and zeros in the position domain
are just those in the time domain  scaled by the same
scaling factor 1/ωr . Hence, after the domain
transformation, the unstable poles and zeros still
remain unstable, and there is no unstable pole-zero
cancellation if it does not happen in the time domain.
In other words, the stabilizability and detectability of
the plant are not affected by the domain transformation.
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Fig. 1.  Configuration of constant-speed-rotation
control system.

Since the parameters in (7) are dependent on
therotational speed at the equilibrium point, the
characteristics of the rotation system will change when
the speed setting is changed, and this will degrade the
response of the system. Consequently this kind of
influence must be made as small as possible through
the design of an efficient controller.

3. CONTROL SYSTEM DESIGN

The requirements of the control system are:
1) elimination of the effect of position-dependent
disturbances on the rotational speed;
2) a good transient response when the speed setting is
changed;
3) reduction of the influence of any changes in the
rotation system’s characteristics.
To accomplish this, a two-degree-of-freedom control
system configuration (Vidyasagar, 1985; Hara and
Sugie, 1988) is considered, as shown in Fig. 1, where
P(λ) is the pulse transfer function of the rotation
system. P(λ) is obtained by sampling the output of
model (6) at intervals of ∆θ, the sampling period, and
putting a zero-order hold at its input in the position
domain.

Let

P
N

D
= ∈    [ ]N, D R λ , (12)

where N and D are a coprime factorization of P. By
choosing a suitable sampling period ∆θ, N can also
be made been coprime with ( – )1 λL , the denominator
of the repetitive controller. Here, the integer

L
T=

∆θ
(13)

is the number of steps of the repetitive controller,
where T is the period of the position-dependent
disturbance.

It is well known that there exist X,Y ∈ R[ ]λ  such that

XN YD+ =1. (14)

Thus, all stabilizing controllers in Fig. 1 can be
characterized as

C = = +[ , ] ( – ) [ , ]–C C Y K N K X K D1 2 2
1

1 2   
K K1 2, ∈ ∞RH . (15)

In order to eliminate the effect of disturbances on the
output and achieve zero tracking error in the steady
state, a constraint arising from the internal model
principle must be satisfied (Theorem 1 in (Hara and
Sugie, 1988)). In this design, the constraint is that the
repetitive controller has to be contained in the controller
C = [ , ]C C1 2 , i.e. its denominator ( – )Y K N2  has to



contain the factor ( – )1 λL .

Assumption 2 guarantees that N and ( – )1 λL D are
coprimes. So, there exist X Y, ′ ∈ R[ ]λ  such that

XN Y DL+ ′ =( – )1 1λ . (16)

If Y is written

Y YL= ′( – )1 λ (17)

and K2 ∈ ∞RH  is restricted to

K K KL
2 2 21= ′ ′ ∈ ∞( – )λ     RH , (18)

then the above constraint can be satisfied.

Finally, the controller is parametrized as

C = = ′ ′

+ ′

[ , ] ( – ) ( – ) *

[ , ( – ) ]

– –C C Y K N

K X K D

L

L

1 2
1

2
1

1 2

1

1

λ

λ      
                     K K1 2, ′ ∈ ∞RH . (19)

In view of (19), the following formulation is obtained:

˜ ˜ : ˜ ˜r NK→ = =ω ω    
1+

1

2

G
PC

PCr 1, (20)

˜ ˜ : ( – ) ( – )˜ ˜v D Y K Nv
L→ = = ′ ′ω λω    

1+ 2

G
PC

1
1 2 .

(21)

Since G ˜ ˜ωv  is dependent only on parameter ′K2  and is

independent of parameter K1, the effect of disturbances
can be reduced by choosing a suitable ′K2 . Similarly,
since G r˜ ˜ω  is dependent only on parameter K1, choosing

a suitable K1 will yield the desired input-output
characteristics.

3.1 Design of Parameter ′K2

From (21), the effect of position-dependent
disturbances on the rotational speed of the rotation
control system is given by

˜ ˜ ˜˜ωv v Sv= =1
1+ 2PC

, (22)

where S  denotes the sensitivity function of the control
system and is defined as

S = 1
1+ 2PC

. (23)

From (22), it is clear that the goal of eliminating
disturbances can be achieved by making
WS L/( – )1 λ

∞
 as small as possible, where W ∈ ∞RH

is a suitably chosen weighting function.

On the other hand, suppose the rotation system’s pulse
transfer function is P  for the standard rotational speed
and P̂  for any other rotational speed. Then, the input-
output transfer function of the control system can be
written as

G r˜ ˜ω = PC

PC
1

21+
(24)

ˆ
ˆ

ˆ˜ ˜G rω = PC

PC
1

21+
. (25)

The change in the input-output transfer function caused
by a change in the speed setting is given by

ˆ –
ˆ

ˆ

ˆ

ˆ

ˆ
˜ ˜ ˜ ˜

˜ ˜

G G

G
Sr r

r

ω ω

ω

= =1
1+ 2PC

P – P

P

P – P

P
. (26)

It has been shown that robustness can be achieved by
making the sensitivity function as small as possible
(Zhao and Kimura, 1988).

For the above reasons, the robustness index here is
defined as

J
W

S WD Y K NL2 21
= = ′ ′

∞
∞–

( – )
λ

(27)

and the parameter ′ ∈ ∞K2 RH  is chosen so as to yield
inf
′ ∈ ∞K

J
2

2
RH

. The solution is given by Gu et al. (1989),

Iglesias et al. (1990) and Iglesias and Glover (1991).

3.2 Design of Parameter K1

K1 is determined using the method proposed by
Horiguchi et al. (1989) to achieve dead-beat control
that moderately restricts the input-output error and
the control input within the settling time. It can be
summarized as follows.

Rewrite P as
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where a b0 0 0, ≠  and a and b are coprimes.
Then N and D in (12) become

N b am= =λ ;     D . (29)

If b is factored into

b b b= +– , (30)



and the number of settling steps is chosen to be µ,
then the input-output error is

˜ : ˜ – ˜
–

˜e r
NK

ei
i

i

= = − =
=
∑ω

λ
λ

µ1
1

1

0

. (31)

The deadbeat constraint on K1 can be stated as follows:
Constraint on K1: Give that the speed setting is changed
in discrete steps, there exists a K1 ∈ ∞RH  that makes
the input-output error vanish after a finite number of
steps if and only if there exists a polynomial
f ∈ R[ ]λ  satisfying

 1 1
0

− =
=

+∑( – )( ˜ )λ λ λ
µ

e b fi
i

i

m . (32)

To optimize the transient response, the transient
performance index is defined as

 J e ui i
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      ρ : weighting coefficient.
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enables the performance index J1 to be written as

 J m F B E EB Q FT T T
1

2= + +( )ρ . (37)

The polynomial f ∈ R[ ]λ   that minimizes J1  is

 F
B E EB Q

b B E EB Q

T T

T T T= +
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ρ ε
ε ρ ε
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where,

    
ε
γ= [ ] ∈ + ×1 1 1 1 1L

T
R( ) .

The parameter K1 ∈ ∞RH  of the dead-beat controller
and the minimum of J1  are given by

K
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It is well known that min J1 is a monotonically
decreasing function of µ. So, min J1 can be improved
by increasing the number of settling steps µ.

4. EXPERIMENTS

The experimental system is shown in Fig. 2. It consists
of two DC motors, a computer with a 68000-series
CPU, and the relevant interface hardware. One of the
DC motors was used as a controlled object. The other
was used to generate a position-dependent disturbance.

In this experiment, the system was subjected to a
position-dependent torque disturbance

v t
t t

( ( )) . (sin
( )

. sin
( )θ θ θ= +0 01898

5
0 5

2
5

 + 0 25
3

5
. sin

( )
)

θ t
. (40)

Thus, the period of the position-dependent disturbance
is

T=10π(rad). (41)

The plant model in the time domain is

P s
K

s
K

t
t

( )

. ; .

=
+

= =






τ
τ

1
1 058 0 03894

, (42)

with the input being the command voltage and the
output being the rotational speed.

The standard rotational speed setting was

ωr = 104 7. ( )rad/s . (43)

The transformation introduced in Section 2 yielded a
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Fig. 2. Experimental setup.

linear plant model in the position domain, which was
sampled at intervals of

∆θ=1.257(rad) (44)

to obtain the pulse transfer function of the nominal
rotation system:

P =

= = −







βλ
λ α

α β
–

. .1 361 0 3820; 
. (45)

The number of steps of the repetitive controller is

L = =10
25

π
θ∆

. (46)

Using the approach developed in Section 3, a repetitive
controller for (45) can be designed as follows.

First, bringing in the factorizations of P yields

P
N

D

b

a

m

= = λ

D N

a a a b b m

= =
= + = + = = =





λ α βλ
λ α λ β

– ;

– ; ;

    

  0 1 0 1
. (47)

Then, according to (30)

b b– ;= =+β  1 (48)

is obtained. Solving (16) gives

X Y
L L

= + − ′ =1 11αλ λ
αβ α

–

; –  . (49)

Letting

W = 1, (50)

and solving (27) yields the parameter ′K2 :
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1
–

( – )αβ λ α
. (51)

The relationship between µ and min J1 was plotted
for various numbers of settling steps to determine a
suitable number. The number turned out to be 10, as
can be seen in Fig. 3 for

ρ = 1. (52)

It is clear that the performance index min J1 decreases
monotonically with respect to µ. Since

min ( ) .J1 10 5 90275= (53)

is very close to

min ( ) .J1 5 66376∞ = , (54)

µ = 10 (55)

is an appropriate value. Thus the parameter K1 is
given by


K k k k T
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Fig. 5 Response to disturbance for a standard speed
setting.

The sensitivity characteristics of the designed constant-
speed-rotation control system are shown in Fig. 4. It
can be seen that the designed control system has a
sensitivity of zero at integer multiples of the frequency
of the position-dependent disturbance. Moreover, it
has low sensitivity at low frequencies. It is clear that
the effects of the position-dependent disturbances were
completely eliminated.

The experimental results are shown in Figs. 5, 6 and
7.

In Fig. 5, the command input was 104.7 rad/s (1000
rpm). After the system reached the steady state,  the
position-dependent disturbances (40) were input. It
can be seen from the open-loop response that the
disturbances exerted a marked influence on the
rotational speed, causing it to fluctuate. When rotation
control was applied, the influence of the disturbances
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Fig. 6 Response to change of the speed setting.

was eliminated after the second period, and the
rotational speed tracked the command input without
steady-state error.

In Fig. 6, the rotational speed was changed from 104.7
rad/s (1000 rpm) to 157.1 rad/s (1500 rpm). Even
though this was different from the standard speed,
the effect of the disturbances was still eliminated
completely, and the speed tracked the input without
steady-state error. This demonstrates that the
fluctuations caused by disturbances can be eliminated,
even when the speed setting is changed.

For comparison, a controller was designed in the time
domain. The experimental results in Fig. 7 show that
the fluctuations are not sufficiently suppressed when
the speed setting is different from the standard speed.

5. CONCLUSIONS

In constant-speed-rotation control systems,
fluctuations in the rotational speed are often caused
by position-dependent disturbances. These
disturbances are periodic functions of the rotational
angle. Within this framework, this paper introduces a
new concept called the position domain, and describes
a new approach to eliminating this kind of disturbance,
even when the rotational speed setting is changed.
The validity of the present method has been
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Fig. 7 Response of constant-speed-rotation control
system designed in the time domain.

demonstrated by experiments.
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