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hydrometallurgy plant. The leaching process in zinc hydrometallurgy involves dissolving zinc-bearing

material in dilute sulfuric acid to form a zinc sulfate solution. The key problems are to determine and

track the optimal pHs of the overflows of the neutral and acid leaches, and to ensure the safe running of

the process. This paper describes an expert control and fault diagnosis scheme that solves those problems.

The expert control is based on a combination of steady-state mathematical models and rule models, and

the fault diagnosis employs rule models with certainty factors and a Bayes representation. A real-world

application of this scheme showed that it not only improved the control performance, but also correctly

diagnosed faults.
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1. Introduction

Leaching, purification and electrolysis are the three basic processes in zinc hydrometallurgy. Leaching,

which is the first process, involves complex chemical reactions for dissolving zinc-bearing material in

dilute sulfuric acid to form a zinc sulfate solution (Mathewson, 1959; Zhuzhou Smeltery, 1973). To obtain

high-purity metallic zinc and reduce costs, the composition of the zinc sulfate solution must meet the

given standards, and as much of the soluble zinc in zinc-bearing material must be dissolved as possible.

On the other hand, because even a small fault in the leaching equipment may lead to changes in flow rates

and temperatures, which can be quite hazardous, it is important to limit the influence of faults that occur

and ensure that the process runs safely. This requires a method not only of effective control, but also of

fault diagnosis for the leaching process.

Conventional methods are mainly based on manual operation and mathematical models. It is difficult to

obtain the desired performance by such methods because of the complexity of the chemical reactions

involved (Gui & Wu, 1995). On the other hand, the field of expert systems is growing rapidly, and its

extensive application to engineering problems has provided effective means of process control and fault

diagnosis (Efstathiou, 1989; The Society of Chemical Engineers, 1993; Yamaguchi 1987; Patton, Frank &

Clark, 1989). Expert systems use the empirical knowledge of human experts in a specific domain to solve

a problem. They have recently been applied in the control of a hydrometallurgical zinc process, and

distributed and model-based expert control techniques have been developed that achieve the control

objectives of high quality and low costs (Wu, Nakano & She, 1998; 1999a). More specifically, an expert

control strategy using neural networks was developed to control the electrolytic process, and the real-

world application of that strategy showed that using neural networks can significantly improve control

performance (Wu, Nakano & She, 1999b). However, that system did not consider the problem of fault

diagnosis.

This paper concerns a combination of expert control and fault diagnosis for the leaching process.

Empirical knowledge and data on the process show that the key control problems are to determine and

track the optimal pHs of the overflows of the neutral and acid leaches, and that the key fault diagnosis

problem is to provide information about the cause and location of any fault that occurs as well as the

appropriate countermeasure. Empirical knowledge and statistical data show that there exist pHs for the

overflows of the neutral and acid leaches under certain operating conditions such that, when the

overflows have those pHs, the resulting zinc sulfate solution meets the given standard and a maximum

amount of the soluble zinc in zinc-bearing material is dissolved. These pHs are called optimal pHs in this

paper. This paper describes an expert control and fault diagnosis scheme employing the model-based

expert technique developed by Wu, Nakano & She, 1999a, to improve control performance and ensure

safe operation of the process. The scheme employs an expert controller to determine the optimal pHs and

a fault diagnosis module to perform on-line and off-line fault diagnosis. It is based on a combination of

steady-state mathematical models and rule models for expert control, and rule models with certainty



3

factors and a Bayes representation for fault diagnosis. The models are constructed from empirical

knowledge, statistical data and chemical reactions for the process. A conventional single-loop control

technique provides tracking control of the optimal pHs. This paper mainly describes the scheme and a

real-world application.

2. Basic scheme

The leaching process considered in this paper is shown in Fig. 1. It uses neutral and acid continuous-leach

technology, and consists of one series of neutral leaches and two identical series of acid leaches (Zhuzhou

Smeltery, 1973). Each series has four tanks and a thickener. Fig. 2 shows the neutral leach series, and Fig.

3 shows the 1st acid leach series, which is the same as the 2nd.

The zinc-bearing material is delivered to a flotation cell and mixed with an oxidized iron solution and

spent electrolyte containing sulfuric acid that is returned from the electrolytic process. The solution is

delivered to four water-powered classifiers. The overflow is pumped to the 1st neutral leach tank, and the

underflow is milled by four ball mills and pumped to the 1st tank of each acid leach series. The spent

electrolyte is also added to the neutral and acid leaches.

The chemical reactions are carried out in the tanks. The solution is then sent to thickeners to settle. The

overflow from the neutral leach is sent to the purification process in the form of a neutral zinc sulfate

solution, and the underflow is added to the 1st tank of each acid leach series. The overflows from the acid

leaches are pumped to the 1st tank of the neutral leach, and the residues are sent to the residue treatment

process.

The concentrations of zinc and the major impurities in the neutral zinc sulfate solution from the neutral

leach should satisfy the standards shown in Table 1.

In addition, an important consideration in process control is to dissolve as much of the soluble zinc in the

zinc-bearing material as possible. This requires optimal conditions for the chemical reactions. Generally

speaking, these conditions are influenced by many factors, such as the pH and temperature of the solution,

the duration of the reaction, and the composition and particle size of the zinc-bearing material, etc.

However, for steady-state operation, the main factors are the pHs of the overflows of the neutral and acid

leaches. So, the key to process control is to determine the optimal pHs, and to track them. Empirical

knowledge and data on the process show that the pHs of the overflows have to be in the range of 4.8~5.2

for the neutral leach and 2.5~3.0 for the acid leaches to guarantee the optimal conditions.

An expert control and fault diagnosis scheme based on the hierarchical configuration shown in Fig. 4 was

derived to solve the key problems in the control and fault diagnosis of the leaching process.
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The scheme employs an expert controller, a fault diagnosis module, three single-loop controllers and

measurement equipment.

The expert controller optimizes and coordinates process control. It determines the optimal conditions for

the chemical reactions involved in the process and obtains the corresponding optimal values of the control

parameters of the process. Coordination means that the optimal values of the control parameters must be

in accord with the actual states of the chemical reactions involved in the neutral and acid leaches.

Empirical knowledge and statistical data on the process show that the pHs of the overflows of the neutral

and acid leaches are the main factors influencing the chemical reactions. They are considered to be the

main control parameters in the proposed scheme. The optimal pHs can be achieved by adjusting the

amount of spent electrolyte added to the leaches. So, the main control inputs are the flow rates of the

spent electrolyte added to the neutral and acid leaches, and the main control outputs are the pHs of the

overflows of those leaches.

The expert controller employs a reasoning strategy that combines steady-state mathematical models and

rule models of the process and uses forward chaining and model-based chaining to determine the optimal

pHs; and it computes the target flow rates of the spent electrolyte that yield the optimal pHs, so that the

composition of the neutral zinc sulfate solution meets the given standards, and as much of the soluble zinc

in the zinc-bearing material is dissolved as possible.

The fault diagnosis module monitors the process. It sends information to the expert controller that

restricts the control activities to the safe range, for example, by ensuring that the pHs of the overflows of

the neutral and acid leaches are not abnormally high or low. These limitations are also used as constraints

in the optimization and coordination of process control.

The fault diagnosis module uses an expert reasoning strategy based on rule models with certainty factors

and a Bayes representation, and combines forward and backward chaining to perform on-line and off-line

fault diagnosis, so as to ensure safe operation.

As shown in Fig. 4, the expert controller receives process data and control commands from the fault

diagnosis module to perform control optimization and fault recovery. At the same time, the fault diagnosis

module also receives the data from the expert controller that is collected by the three single-loop

controllers.

The three single-loop controllers track the target flow rates by means of PI control algorithms to ensure

that the actual pHs match the optimal values.
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The variables controlled in the single-loop controllers are the flow rates of the spent electrolyte to be

added to the 1st neutral leach tank and the 1st tanks of the two series of acid leaches. The single-loop

controller controls the amount that the valve is opened to adjust the flow rate of spent electrolyte.

Measurement equipment is used for the on-line measurement of process parameters such as pHs,

concentrations, flow rates, etc.

3. Design of expert controller

The design of the expert controller is based on the model-based expert technique developed by Wu,

Nakano & She, 1999a. The controller determines the optimal pHs by means of rule models, and computes

the target flow rates through a combination of steady-state mathematical models and rule models.

3.1. Determining the optimal pHs

There exist optimal pHs in the leaching process that ensure that as much of the soluble zinc in zinc-

bearing material as possible is dissolved on condition that the concentration standards of the zinc sulfate

solution are met. The values of the optimal pHs vary with time. Conventional control methods choose

fixed pHs in the allowable ranges in advance and track them. So, they cannot guarantee that the resulting

pHs of the overflows are optimal. To solve this problem, it is indispensable to determine the optimal pHs

in the given ranges at every moment to obtain the optimal chemical reaction conditions.

Empirical knowledge and data revealed that the optimal pHs are mainly related to the following factors:

1. The composition and particle size of the zinc-bearing material;

2. The temperature of the solution; and

3. The concentrations of zinc and impurities in the overflows of the neutral and acid leaches.

However, it is very difficult to express the exact relationships among the optimal pHs and these factors

with mathematical models.

To obtain the optimal pHs, production rule models of the If-Then form (Efstathiou, 1989) are used, and a

number like R#  is assigned to each rule model.

The If part contains the zinc content ( fc) on a scale of 1 to 10 and the particle size ( fps ) on a scale of 1 to

8 of the zinc-bearing material, the temperature of the solution ( f t = high, medium or low), and the

concentrations of zinc and impurities in the overflows from the neutral and acid leaches. The Then part

contains instructions to select and adjust the initial and optimal pHs.

The rule models for determining the optimal pHs are constructed based on empirical knowledge and data
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on the process. Some typical rule models for the neutral leach are shown in Table 2. The rule models for

the acid leaches are also constructed in the same manner.

In Table 2, f Ncz  and f Nci  denote the concentration levels (high, medium or low) of zinc and impurities,

respectively, in the overflow of the neutral leach; CNopt  is the optimal pH of the overflow of the neutral

leach; CN  is the initial value of CNopt ; and CN m84 , CN h101 , CN l18 , ∆CNzl  and ∆CNil  are

empirically determined values.

The rule models for the acid leaches are similar to those for the neutral leach. The algorithm that

determines the optimal pHs is divided into two stages as follows:

Stage 1. Select the initial pHs based on fc , fps  and f t .

Step 1:  Find f c , fps  and f t  from the zinc content and particle size of the zinc-bearing material,

and the temperature of the solution, respectively.

Step 2:  Determine the initial pHs, such as CN ,  by rule models REC1 - REC3.

Step 3:  Find the concentration levels of zinc and impurities in the overflows ( f Ncz  and f Nci ).

Stage 2. Adjust the initial pHs based on the concentrations of zinc and impurities to obtain the optimal

pHs.

Step 4:  Determine the optimal pHs, such as CNopt ,  by rule models such as REC4 - REC5.

3.2. Computing the target flow rates

The pHs of the overflows are adjusted by controlling the flow rates of the spent electrolyte added to the

leaching process. So, it is crucial to determine the target flow rates of spent electrolyte that yield the

optimal pHs. In the calculation, conventional control methods are based solely on mathematical models

obtained from the main chemical reaction equations. However, those models do not consider other

chemical reactions, variations in the reaction conditions, or the incompleteness of the reactions.

Leaching can be considered to be a steady-state chemical process because it is generally run within a

specific operating range. Based on this observation, this paper proposes a method for determining the

target flow rates that yield the optimal pHs by a combination of steady-state mathematical models and

rule models describing the process.

The chemical reactions occur mainly in the leach tanks. The steady-state mathematical models are based

on the assumptions that the zinc-bearing material and the solution in the tanks are agitated and completely

mixed, and that the temperature of the solution is uniform. The mass balance principle (e.g. Inugita &

Nakanishi, 1987) yields the following dynamic balance equation for the sulfuric acid in the neutral leach.

ε N N
Nh

Co Ch Nh Ne Nhe NhV
x

t
F x x F x x

d

d
= − + −( ) ( )
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where xNh , xCh  and xiAh  are the concentrations of sulfuric acid in the solution after the neutral leach,

the classifiers and the ith acid leach series, respectively; xNhe  is the concentration of sulfuric acid in the

spent electrolyte added to the neutral leach; FCo  and FiAo  are the flow rates of the overflows from the

classifiers and the ith acid leach series, respectively; FNe  is the flow rate of the spent electrolyte added to

the neutral leach; VN  is the total volume of the neutral leach tanks; ε N  is the ratio of liquid to solid in

the solution in the neutral leach; and rNh  is the reaction rate of sulfuric acid.

For steady-state operation, dx dtNh / = 0  and rNh  is the steady-state reaction rate. So, Equation (1)

becomes

F x x r V F x xNe Nhe Nh Nh N Co Ch Nh( ) ( )− = − − + −
=
∑ F x xiAo iAh Nh

i

( )
1

2

. (2)

Let f Nzo  denote the steady-state particle reaction rate of zinc oxide with sulfuric acid and xCzo  denote

the concentration of zinc oxide in the overflow from the classifiers. Then,

M

M
r F x fNh Co Czo Nzo

ZnO

H SO2 4

= (3)

is obtained for the zinc oxide in the neutral leach by the principle of steady-state mass balance,

where MZnO  and MH SO2 4
 are the molecular weights of zinc oxide and sulfuric acid, respectively. xCzo

can be computed from

x
kCzo Czo Czo

Co

=
+

η µ
1

1
, (4)

where ηCzo  is the zinc oxide content of the zinc-bearing material; µCzb  is the specific gravity of the

zinc-bearing material; and kCo  is the ratio of liquid to solid in the overflow from the classifiers.

Combining Equations (2), (3) and (4) yields

F
x x

K
F

k
f F x xNe

Nhe Nh
Nh

Co

Co
Nzo Co Ch Nh=

− +
− −

L
NM

1

1
( ) − −

O
Q
PP=

∑F x xiAo iAh Nh

i

( )
1

2

, (5)
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where

K
M

M
VNh Czo Czb N= H SO

ZnO

2 4 η µ . (6)

f Nzo  can be estimated based on the experience of experts and operators and accumulated empirical

knowledge on the neutral leach process. Using this estimate, $f Nzo , in Equation (5) yields

F
x x

K
F

k
f F x xNe

Nhe Nh
Nh

Co

Co
Nzo Co Ch Nh=

− +
− −

L
NM

1

1
$ ( ) − −

O
Q
PP=

∑F x xiAo iAh Nh

i

( )
1

2

. (7)

Let xNh
g  denote the target concentration of sulfuric acid in the solution after the neutral leach, which

corresponds to the optimal pH. From empirical knowledge, the target flow rates of the spent electrolyte

added to the neutral leach during the kth period are given by

F k k F kNe
g

N Ne( ) ( ) ( )= α + −
=
∑β N Nh

g
Nh

l

k

l x x l( ) ( )
0

, (8a)
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where α N k( )  and β N l( )  are empirical coefficients determined from empirical knowledge. α N k( )  is

used to take other reactions into account, and the term β N Nh
g

Nh
l

k

l x x l( ) ( )−
=
∑

0

 is used to compensate

for the error between the target and actual values.

The rule models for determining $ ( )f kNzo , α N k( )  and β N l( ) are constructed by a method similar to

those for the optimal pHs.

The following algorithm computes the target flow rate that yields the optimal pH for the neutral leach.

Step 1:  Select $ ( )f kNzo , α N k( )  and β N l( )  based on f c , f ps  and f t  as well as the

concentrations of sulfuric acid in the overflow of the neutral leach and in the solutions added to the

neutral leach by rule models.

Step 2:  Obtain x kNhe ( ) , x kCh ( ) , x kiAh ( ) , k kCo ( ) , F kCo ( )  and F kiAo ( )  from the measurement

equipment.
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Step 3:  Compute xNh
g  corresponding to the optimal pH, and K kNh ( )  based on process data.

Step 4:  Compute the target flow rate F kNe
g ( )  from steady-state mathematical model (4). If the value

is outside the allowable range, set it to an allowable value by firing suitable rule models.

An algorithm similar to the one for the neutral leach computes the target flow rates for the acid leaches.

3.3. Structure of expert controller

The expert controller consists of a characteristics-capturing mechanism, a database, a knowledge base, an

inference engine and a user interface.

The characteristics-capturing mechanism captures the characteristics of the process data from the

measurement equipment and the three single-loop controllers. These characteristics are matched up with

the conditional parts of rule models.

The database stores process data from on-line measurement. It also stores the quality requirements for the

neutral zinc sulfate solution, statistical data on the process, reasoning results from the inference engine,

etc.

The knowledge base stores the rule models, steady-state mathematical models, empirical data, calculation

laws, etc.

The inference engine acquires data from the database, and then uses both the knowledge in the knowledge

base and a reasoning strategy that combines forward chaining (Efstathiou, 1989) and model-based

reasoning (Ishizuka & Kobayashi, 1991) to determine the optimal pHs and compute target flow rates. The

target flow rates are sent to the single-loop controllers.

The user interface is used to configure and edit the knowledge base, and to display and print data, graphs,

reasoning results, etc.

4. Design of fault diagnosis module

The basic structure of the fault diagnosis module is similar to that of the expert controller. It is shown in

Fig. 5.

The knowledge base stores the rule models, Bayes representation and empirical data for fault diagnosis;

the causes and locations of faults; the corresponding actions to be taken; etc. The database stores data

from measurement equipment and input by operators, statistical data, reasoning results, etc. The inference

engine uses forward chaining and backward chaining to perform fault diagnosis. The user interface
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displays reasoning results and gives off fault alarms, and is also used to send commands to the expert

controller to remove faults.

4.1. Fault diagnosis procedure

The main functions of fault diagnosis are to detect and diagnose faults in important equipment, such as

the leach tanks, pumps, etc., and to indicate the causes and locations of faults as well as suitable

countermeasures. The fault diagnosis module is designed to provide support for the safe running of the

process. It monitors the process in real time to detect any unusual states, such as excessive flow rates or

temperatures, abnormally low pHs, etc. In addition, it also accepts fault facts and data input by operators.

Based on unusual states and fault facts and data, the module performs on-line and off-line fault diagnosis.

Then it outputs the diagnostic results, which indicate the cause and location of the fault as well as suitable

actions to be taken.

The module uses rule models with certainty factors and a Bayes representation, and combines forward

chaining and backward chaining. The procedure is as follows.

Step 1:  Obtain data on the process from the measurement equipment and the expert controller to

capture any unusual process states, and accept fault facts and data input by operators through the user

interface.

Step 2:  Store the unusual states and fault facts and data in the database.

Step 3:  Based on data in the database, select either a fault mode for on-line fault diagnosis using rule

models in the knowledge base and a forward chaining strategy, or possible fault modes for off-line fault

diagnosis using a Bayes representation.

Step 4:  For off-line fault diagnosis, select one of the possible fault modes using a backward chaining

strategy.

Step 5:  Display the reasoning results with certainty factors on the screen, and/or give off an alarm

through a bell and lights.

Based on the diagnosis, the operators find the cause and location of the fault by checking the site, and

take suitable countermeasures to correct the fault. According to type of the fault, operators can also send

commands through the user interface to the expert controller to correct it.

4.2. Rule models for fault diagnosis

An important aspect of the design of the fault diagnosis module is the construction of rule models, which

are based on the empirical knowledge of engineers and operators as well as on empirical data and

statistical results of past fault countermeasures.

The procedure for constructing rule models is shown in Fig.6. It has four steps.

Step 1:  Collect all unusual states that are useful for fault diagnosis. The unusual states are mainly
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collected through on-line measurement and off-line data input, and also include the current states of the

flow-controlling valves and pumps.

The main variables that can be measured on-line are as follows:

1. The flow rate of the spent electrolyte, zinc-bearing material, oxidized iron solution, and

overflows and underflows of the classifiers, leach tanks and thickeners;

2. The temperatures of the solutions in the acid and neutral leaches;

3. The pHs of the overflows and underflows of the classifiers, leach tanks and thickeners; and

4. The operating states of the flow regulation valves and the pumps.

Unusual states are generally represented by +1 (above the allowable range) or −1 (below the

allowable range), but for valves and pumps they are represented by +1 (closed for a valve and

stopped for a pump).

Step 2:  Establish fault modes using the fault tree analysis method (Yamaguchi, 1987; Patton, Frank &

Clark, 1989). As shown in Fig. 7, the unusual states form the basis for constructing fault trees, which

connect these states to hypotheses in the middle and fault causes at the top. The fault modes are

captured from the hypotheses. The cause and location of a fault as well as suitable countermeasures are

contained in a fault mode extracted from empirical knowledge and statistical data on past fault

countermeasures. A name and a number are assigned to each fault mode. An example is given in Table

3.

Step 3:  Determine the certainty factors that represent the probability of fault causes. It is desirable to

assign a probability to each fault cause because there might be several causes for one fault mode. The

probability is given by a certainty factor that depends on the failure rate of the equipment, and

empirical knowledge and statistical data on past safe recovery.

Step 4:  Construct rule models for fault diagnosis based on the unusual states, fault modes and

certainty factors. Rule models for fault diagnosis are represented in the If-Then form.

Some typical rule models are shown in Table 4, where the values in parentheses are certainty factors.

4.3. Reasoning strategy for fault diagnosis

A two-step forward chaining strategy is used for on-line fault diagnosis:

1. First, select a fault mode based on information about the unusual state; and

2. Then extract the cause and location of the fault and a suitable countermeasure from the knowledge

base.

It follows from the above two steps that fault diagnosis using forward chaining requires a method of

selecting the rule models and related data in the knowledge base according to the unusual state. The

procedure from choosing a rule model to executing it has three steps: marching, clash resolution and

action. In our case, a clash-resolution strategy (Efstathiou, 1989) in which the rule model with the most

complex conditions is fired first is used to select the fault mode.
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A backward chaining strategy based on the fault facts and data input by operators is used for off-line fault

diagnosis. The inference procedure is shown in Fig. 8. It has four steps.

Step 1:  Select possible fault modes from the fault facts by using a Bayes representation.

Step 2:  Test each fault mode by checking the data and states of the process.

Step 3:  If the test is successful, the fault mode is selected, and the cause and location of the fault and a

suitable countermeasure are displayed as reasoning results on a screen. If not, go to the next step.

Step 4:  See if all possible fault modes have been tested. If yes, select the most probable fault mode

and display the associated reasoning results. If not, select the next fault mode and return to step 2.

Assume that all possible fault modes are selected from among n fault modes. Let Y  and Xi  denote a

fault fact and the ith fault mode; and let P Xi( )  and P Y Xi( / )  denote the a priori probability of Xi

and the conditional probability of Y  with respect to Xi , respectively. Then, P X Yi( / ) , which is the a

posteriori probability of Xi  with respect to Y , can be obtained from P Xi( )  and P Y Xi( / )  by using a

Bayes representation

P X Y
P Y X P X

P Y X P X

i
i i

j j

j

n
( / )

( / ) ( )

( / ) ( )

=

=
∑

1

. (9)

The possible fault modes are the ones that satisfy

P X Yi( / ) ≥ β , (10)

where β  is an empirical coefficient. P Xi( )  and P Y Xi( / )  are determined from the failure rates of the

equipment, and empirical knowledge and statistical data on past safe recovery.

5. Real-world application

The designed expert control and fault diagnosis scheme was used in the leaching process of a nonferrous

metals smeltery.

As shown in Fig. 9, a distributed computer control system for the leaching process was constructed based

on an industrial control computer (IPC 810), three single-loop controllers (761 series by Foxboro),

measurement equipment and control algorithms. The expert controller and the fault diagnosis module are

in the industrial control computer.

The distributed computer control system runs under the Windows 98 operating system. The functions of
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the expert controller were implemented using a package of application programs written in the C++

language, while those of the 761 controllers were implemented through the configuration.

It should be pointed out that the package of application programs used in the expert controller was

specially developed for the electrolytic process. Compared with programs designed using the

development platform of an expert system, our package has the advantages of quick execution speed and

high efficiency, but also the disadvantage of a long development time.

Special instruments are used to accurately measure different kinds of process data. More specifically, the

pHs are measured with industrial pH meters, the concentrations with an X fluorescence analyzer, the flow

rates with E+H electromagnetic flow meters, etc.

The distributed computer control system is currently running in a nonferrous metals smeltery. It is an

important part of the control of the overall hydrometallurgical zinc process.

The optimal pHs and the corresponding target flow rates are determined by the expert controller, and the

target flow rates are tracked by the single-loop controllers. Figs. 11, 12 and 13 show some results of

actual runs. The dotted lines indicate the standard limits of the concentrations.

The results show that the pHs are kept in the optimal ranges of 4.8 ~ 5.2 for the neutral leach and 2.5 ~

3.0 for the acid leaches, and that the concentrations of zinc and the major impurities (Cu, Cd and Co) in

the neutral zinc sulfate solution meet the given standards (Table 1).

In contrast, results for the conventional control show that it could only keep the pHs in the ranges of 4.0 ~

5.8 for the neutral leach and 2.0 ~ 3.5 for the acid leaches, the concentration of zinc in the range of 120 ~

150 g/l, and that of Cu, Cd and Co less than 550 mg/l, 1100 mg/l and 35 mg/l, respectively.

For conventional control, it is clear that the pHs could not be kept in the optimal ranges, and that the

concentration of zinc was relatively low and those of the impurities were relatively high.

Compared with conventional control, statistical data shows that the expert control method proposed in

this paper considerably cuts costs, makes the leach rate of zinc-bearing material 5.0% higher, and

dramatically reduces the consumption of zinc-bearing material. This means that much more of the soluble

zinc in the zinc-bearing material is dissolved.

Regarding fault diagnosis, actual runs show that the percentage of hits is over 90% for on-line diagnosis

and over 95% for off-line diagnosis. Fault diagnosis reduces the frequency of occurrence of actual faults

to quite a low level because it pinpoints the cause and location of faults so that suitable countermeasures
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can be taken before the fault occurs.

6. Conclusions

This paper has described an expert control and fault diagnosis scheme for the leaching process in a zinc

hydrometallurgy plant. The results of actual runs show that the scheme not only provides effective control,

but also ensures safe operation of the leaching process. The following conclusions can be drawn:

1. The complex behavior of the leaching process can be described using a combination of steady-state

mathematical models and rule models. The models are constructed based on the steady-state

chemical reactions involved in the process and empirical knowledge and data on the process.

2. Expert control that combines steady-state mathematical models, rule models, forward chaining and

model-based chaining can be used to determine the optimal pHs of the overflows of the neutral and

acid leaches and the corresponding target flow rates of the spent electrolyte added to the process.

The conventional single-loop control technique is used to track the target flow rates.

3. Fault diagnosis that employs rule models with certainty factors, a Bayes representation, forward

chaining and backward chaining guarantees the safe running of the process.

4. Expert control and fault diagnosis can be implemented by an expert controller and by a fault

diagnosis module, respectively, in an industrial control computer.

5. A real-world application has demonstrated the effectiveness of the scheme.
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Captions of Figures and Tables

Fig. 1. Leaching process.

Fig. 2. Neutral leach series.

Fig. 3. First acid leach series.

Fig. 4. Hierarchical configuration.

Fig. 5. Fault diagnosis module.

Fig. 6. Procedure for constructing rule models.

Fig. 7. A fault tree.

Fig. 8. Flow chart of backward chaining.

Fig. 9. Architecture of distributed computer control system.

Fig. 10. pHs of overflows.

Fig. 11. Concentration of zinc in overflows.

Fig. 12. Concentrations of major impurities in overflows.

Table 1. Standard allowable ranges of concentrations of zinc and major impurities in neutral zinc sulfate

solution (mg/l).

Table 2. Some rule models for determining optimal pHs in neutral leach.

Table 3. An example of a fault mode.

Table 4. Some typical rule models for fault diagnosis.
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Table 1. Standard allowable ranges of concentrations of zinc and major impurities in

neutral zinc sulfate solution (mg/l).

Zn Cu Cd Co
140000 ~ 170000 < 450 < 1000 < 25

Table 2. Some rule models for determining optimal pHs in neutral leach.

REC1: If fc = 8  and f ps = 4  and ft = medium
     Then C CN N m= 84

REC2: If fc = 10  and f ps = 1  and ft = high
     Then C CN N h= 101

REC3: If fc = 1  and f ps = 8  and ft = low
     Then C CN N l= 18

REC4: If f Ncz = large  Then C C CNopt N Nzl= − ∆
REC5: If f Nci = large  Then C C CNopt Nopt Nil= + ∆

Table 3. An example of a fault mode.

Number: Y106
Name: First neutral leach tank is blocked
Fault causes:

a) There is too much residue at the bottom.
b) The pipe at the bottom is blocked.
c) The flow opening at the bottom is too small or broken.

Location: First neutral leach tank.
Suitable actions to be taken:

a) Remove the residue at the bottom.
b) Clean the pipe at the bottom.
c) Open the flow valve at the bottom more or repair the flow valve.

Table 4. Some typical rule models for fault diagnosis.

 RFD1:  If the underflow from the classifier is −1 and the overflow from the classifier is +1
    Then the fault mode is J101 (0.95)
 RFD2:  If the fault mode is J101
    Then there is too much residue at the bottom of the classifier (0.85), or the classifier is broken (0.10)
 RFD3:  If the underflow of the neutral leach tank is −1
    Then the fault mode is Y100 (0.95)
 RFD4:  If the fault mode is Y100
    Then there is too much residue at the bottom of the neutral leach tank (0.60), or the pipe at the bottom of the

neutral leach tank is blocked (0.20), or the valve is not open enough or the valve is broken (0.15)


