Delay-Dependent Criteria for Robust Stability
of Time-Varying Delay Systems

Automatica, Vol. 40, No. 8, pp. 1435-1439, Aug. 2004.

Min Wu?, Yong He?, Jin-Hua She”, Guo-Ping Liu “¢
aSchool of Information Science and Engineering, Central South University,
Changsha 410083, China
bSchool of Bionics, Tokyo University of Technology, Tokyo, 192-0982, Japan
¢ School of Electronics, University of Glamorgan, Pontypridd CF37 1DL, UK

d Institute of Automation, Chinese Academy of Sciences, Beijing 100080,
P.R.China

Abstract

This paper deals with the problem of delay-dependent robust stability for sys-
tems with time-varying structured uncertainties and time-varying delays. Some new
delay-dependent stability criteria are devised by taking the relationship between the
terms in the Leibniz-Newton formula into account. Since free weighting matrices are
used to express this relationship and since appropriate ones are selected by means
of linear matrix inequalities, the new criteria are less conservative than existing
ones. Numerical examples suggest that the proposed criteria are effective and are
an improvement over previous ones.
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1 Introduction

Stability criteria for time-delay systems have been attracting the attention of
many researchers. They can be classified into two categories: delay-dependent
and delay-independent criteria. Since delay-dependent criteria make use of
information on the length of delays, they are less conservative than delay-
independent ones. For delay-dependent criteria (see, for example, Su & Huang
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(1992), Li & de Souza (1997), Gu et al. (1998), Cao et al. (1998), de Souze
& Li (1999), Park (1999), Han & Gu (2001), Kim (2001), Moon et al. (2001),
Han (2002a, 2002b), Yue & Won (2002), Fridman & Shaked (2002, 2003)),
the main approaches currently consist of four model transformations of the
original system (Fridman and Shaked (2003)). The first type is a first-order
transformation. Since additional eigenvalues are introduced into the trans-
formed system, it is not equivalent to the original one (Gu & Niculescu (2000)).
The second type is a neutral transformation. The system obtained by this
method is not equivalent to the original one, either (Gu & Niculescu (2001));
and this method requires an additional assumption to obtain the stability
condition for the system. In addition, the inequality used to determine the
stability of the system is —2a’b < a”Xa + b'X"'b, a,b € R, X > 0,
which is known to be conservative. Park (1999) introduced a free matrix, M,
to obtain a less conservative inequality —2a’b < (a + Mb)" X (a + Mb) +
b" X~1b + 2b" Mb, and Moon et al. (2001) extended it to a more general form,
al™[ X Y -1I][a X Y
b [YT—I Z ][b]’ Yyt Z
model transformation employs these inequalities and yields a transformed sys-
tem that is equivalent to the original one. However, in the derivative of the Lya-

punov functional, Park (1999) and Moon et al. (2001) used the Leibniz-Newton
t

—2a7h <

] > 0. The third type of

formula and just replaced some of the terms z(t — 7) with z(t) — / #(s)ds in
t—7

the derivative of the Lyapunov functional in order to make it easy to handle.
t

For example, in Moon et al. (2001), z(t—7) was replaced with z(t) — / x(s)ds
t—1

in the expression 2z7 (t) PA;4(t), but not in 727 (¢)Zi(t). Since both z(t — 7)
L

and x(t) — / #(s)ds affect the result, there must be some relationship be-

t—T1
tween them; and there must exist optimal weighting matrices for those terms.

However, they did not give a method for determining them, but just selected

some fixed weighting matrices. Fridman & Shaked (2002, 2003) combined a

descriptor model transformation (Fridman (2001)) with Park and Moon’s in-

equalities to yield the fourth type of transformation. This method produces

less conservative criteria. However, since the basic approach in Fridman and
t

Shaked (2002, 2003) is also based on the substitution of z(t) — / z(s)ds for
t—1

x(t — 1), it does not entirely overcome the conservatism of the methods given

by Park (1999) and Moon et al. (2001).

This paper presents new criteria based on a new method with some inter-
esting features. First, it deals with the system model directly and does not
employ any system transformation, thus avoiding the conservatism that re-



sults from such a transformation. Second, it does not use the above inequality
or the improved inequality to estimate the upper bound of —2a”b. This also
reduces the conservatism in the derivation of the stability condition. Third,
some free weighting matrices are employed to express the influence of the
terms in the Leibniz-Newton formula, in contrast to existing methods, which
preselect fixed ones. The matrices are determined by solving linear matrix
inequalities (LMIs). This is the main advantage of our method, and is the
essential difference between existing methods and ours. Compared with Moon
et al. (2001), and Fridman & Shaked (2002), our new criteria overcome some
of the main sources of conservatism, and contain the criteria in Moon et al.
(2001) as a special case. Furthermore, the new criteria also contain the well-
known delay-independent stability condition in Gu et al. (2003) and Hale &
Verduyn Lunel (1993). For two examples studied numerically, the new criteria
are shown to be effective, offering significant improvements over previously
published criteria.

2 Preliminaries

Consider a nominal system ¥, with a time-varying delay given by

g . | #(0) = Ax(t) + Ba(t = d(t)), ¢>0 "

2(t) = ¢(1),t € [=7,0],

where z(t) € R" is the state vector. The time delay, d(t), is a time-varying
continuous function that satisfies

0<dt)<T, dt)<p<l, (2)

where 7 and p are constants and the initial condition, ¢(¢), is a continuous
vector-valued initial function of ¢ € [—7, 0].

When the system contains time-varying structured uncertainties, it can be
described by

B(t) = (A+ AA(t))x(t)
S +(B+ AB(t))x(t — d(t)), t > 0, (3)
z(t) = ¢(t),t € [-,0].



The uncertainties are assumed to be of the form

[AA(t) AB(1)] = DE(t)[Eo Ep), (4)

where D, E, and E, are constant matrices with appropriate dimensions, and
F(t) is an unknown, real, and possibly time-varying matrix with Lebesgue-
measurable elements satisfying

FT(t)F(t) <1, Vt. (5)
The following lemma is employed to handle the time-varying structured un-

certainties in the system.

Lemma 1 (Xie (1996)) Given matrices Q@ = QT, H,FE and R = RT > 0 of
appropriate dimensions,

Q+HFE+ETFTHT <0,

for all F satisfying FTF < R, if and only if there exists some \ > 0 such that

Q+ \HHT + \"'ETRE < 0.

The Lyapunov functional candidates for ¥, and 3; are chosen to have the
same form and are given by

t

V(xy) := 2" (t)Pa(t) + / 2" (5)Qx(s)ds

. t—d(t) (6)
.T .
—i—/tJé T (s)Zi(s)dsdb,

where P=P7 >0, Q=Q" >0and Z = Z" > 0 are to be determined.

3 Main results

First, the nominal system, Y, is discussed. The Leibniz-Newton formula is
employed to obtain a delay-dependent condition, and the relationship between
the terms in the formula is taken into account. Specifically, the terms on the



left side of the equation
2 [xT(t)Y + 2t (t — d(t))T] *
t

z(t) — t(s)ds —x(t — d(t))| =0
t—d(t)

are added to the derivative of the Lyapunov functional, V(xt) In this equa-
tion, the free weighting matrices Y and 7T indicate the relationship between
the terms in the Leibniz-Newton formula. As is shown in the following theo-
rem, they can easily be determined by solving the corresponding linear matrix
inequalities.

Theorem 2 Given scalars 7 > 0 and p < 1, the nominal system ¥ is asymp-
totically stable if there exist symmetric positive definite matrices P = PT > 0,
Q=Q" >0and Z = Z" > 0, a symmetric semi-positive definite matriz

X1 Xio . . . .
X = > 0, and any appropriately dimensioned matrices Y and T
XTI, Xo

such that the following LMIs are true.

q)ll (1)12 TATZ
®=| T, &, rBTZ| <0, (8)
TZATZB —17

Xll X12 Y
U= |XL X,, T|>0, (9)
yT 17 7

where

Q) =PA+A"P+Y +YT +Q+ 71Xy,
QIQZPB—Y—FTT—FTXIQ,
(1322 :—T—TT— (I—M)Q+TX22

PROOF. Using the Leibniz-Newton formula, we can write

t

ot — d(t)) = x(t) / i(s)ds. (10)

t—d(t)



Then, for any appropriately dimensioned matrices Y and T, we have Eq. (7).

L : . X1 X2
On the other hand, for any semi-positive definite matrix X = ,
XTI X
the following holds.
t
e (xE) ~ [ € WXEWds >0, (11)

where £(t) = [27(t) 2"(t —d(t))]". Then, for X = X* > 0, and any matrices
Y and T, using Egs. (7) and (11) and calculating the derivative of V' (z;) in
(6) for X yields

Viz,) = a7 (t)[PA+ AT Plz(t)
+227 (1) PBx(t — d(t)) + =7 (£)Qu(t)
—(1 = d(t)aT(t — d(t))Qu(t — d(t))

+riT (1) Zi () — /aL"T( )Zi(s)ds

| /\

#T(t)[PA + ATP]:v(t)
+22T(#)PBx(t — d(t)) + 27 (£)Qz ()
—(1 = p)a™(t — d(t))Qu(t — d(t))

+rat /t & (12)

t—d(t)

12 o7 (0 +a” (¢ — d(1))T] +

(t) — / i(s)ds — z(t — d(t))
t—d(t)

+re"OXEW) - [ €
tt d(t)
=W ~ [ ()Wt 5)ds
t—d(t)



where
C(t,s) = [a"(t) a™(t —d(t)) 7 (s)]",

q)ll + TATZA (1)12 + TATZB
(I)?Q + TBTZA (1322 + TBTZB

—
—_— e

@11, P1o and Doy are defined in (8) and W is defined in (9). If = < 0 and ¥ > 0,
then V(x;) < 0 for any £(t) # 0. Applying the Schur complement (Boyd et
al., 1994) shows that Eq. (8) implies = < 0. So ¥y is asymptotically stable if
LMIs (8) and (9) are true. This completes the proof. O

Remark 1: For a time-invariant delay system, according to the procedure
of the proof of Theorem 2, it is clear that setting X5 = 0, X9 = 0 and
T = 0 in Theorem 2 yields precisely Theorem 1 in Moon et al. (2001). So,
Theorem 2 in this paper is an extension of Theorem 1 in Moon et al. (2001).
Instead of choosing X5, X95 and 7T to be fixed matrices, Theorem 2 selects
them by solving LMIs. So, it always chooses suitable ones, thus overcoming
the conservatism of Theorem 1 in Moon et al. (2001).

Remark 2: If the matrices Y, T and X in Eq. (9) are set to zero, and
Z = €l (e is a sufficiently small positive scalar), then Theorem 2 is identical
to the well-known delay-independent stability criterion in Gu et al. (2003)
(Proposition 5.14 on page 169) and Hale & Verduyn Lunel (1993) (Eq. (2.4)
on page 134), which is stated as follows:

Corollary 3 When p = 0, system ¥y is asymptotically stable if there exist
real symmetric matrices P > 0 and QQ such that

PA+A"P+Q PB
BTPp —Q

<0

15 satisfied.

So, any system that exhibits delay-independent stability, as determined by
Corollary 3, is, for all practical purposes, asymptotically stable for any delay
satisfying 0 < d(t) < 7, where 7 is a positive real number.

Now, extending Theorem 2 to systems with time-varying structured uncer-
tainties yields the following theorem.

Theorem 4 Given scalars 7 > 0 and p < 1 and assuming (2), the uncertain



system Y is robustly stable if there exist symmetric positive definite matrices
P=P' >0 Q=Q" >0and Z = Z" > 0, a symmetric semi-positive

X1 Xio
X7, Xo
(9) and the following LMI are true.

definite matrix X = > 0, any matrices Y and T such that LMI

(&), + ETE, 15+ ETE, ATZ PD |

O, + ETE, ®yy + ETE, TBTZ 0
TZA T/B —77 17D
D'P 0 D'Z —I

where @11, P1y and Py are defined in (8).

PROOF. Replacing A and B in (8) with A + DF(t)E, and B + DF(t)E,,
respectively, we find that (8) for ¥; is equivalent to the following condition.

PD
d+| 0 | F(1) [E E, 0]
74D
ET
+ | El| F'(t) {DTP 0 TDTZ] <0.
0

By Lemma 1, a sufficient condition guaranteeing (8) for ¥ is that there exists
a positive number A\ > 0 such that

PD
AP+ A2 0 {DTP 0 TDTZ]
72D (14)
By
+ | BEF {E E, 0]<0
0



Replacing AP, A\Q, A\Z, \X, \Y and AT with P,Q, Z, X,Y and T, respectively,
and applying the Schur complement shows that (14) is equivalent to (13). This
completes the proof. O

Remark 3: Moon et al. (2001) presented an algorithm for constructing a con-
troller with a suboptimal upper bound on the delay based on the method of
convex optimization, which stabilizes the system for all admissible uncertain-
ties. The results in this paper combined with that algorithm provide a method
of solving the synthesis problem for control systems with a time-varying delay.

4 Numerical Examples

In this section, some examples are used to demonstrate that the method pre-
sented in this paper is effective and is an improvement over existing methods.

Example 5 Consider the uncertain system ¥, with the following parameters.

-2 0 -1 0
0 -1 -1 -1
E, = diag{1.6, 0.05}, E, = diag{0.1, 0.3}, D =1.

This example was given in Kim (2001) and Yue & Won (2002). The upper
bounds on the time delay for different y obtained from Theorem 4 are shown
in Table 1. For comparison, the table also lists the upper bounds obtained
from the criteria in Li & de Souza (1997), Kim (2001), Yue & Won (2002),
Moon et al. (2001) and Fridman & Shaked (2002). Note that the results for
Fridman & Shaked (2002) were obtained by combining Lemma 1 in their
paper with Lemma 1 in this paper. It is clear that Theorem 4 gives much
better results than those obtained by Li & de Souza (1997), Kim (2001), Yue
& Won (2002) or Moon et al. (2001), and the same or better results than
Fridman and Shaked’s (2002).

Example 6 Consider the robust stability of the uncertain system ¥, with the
following parameters.

—-0.5 =2 —-0.5 —1
A — B =

Y Y

1 -1 0 06
E, = E, =diag{0.2, 0.2}, D=1.



Table 1
Allowable time delay (Example 5).

p 0 0.5 0.9

Li & de Souza (1997) 0.2013 - -
Kim (2001) 02412 | <02 | <0.1
Yue & Won (2002) 0.2412 | 0.2195 | 0.1561

Moon et al. (2001) 0.7059 - -
Fridman & Shaked (2002) 1.1490 | 0.9247 | 0.6710
Theorem 4 1.1490 | 0.9247 | 0.6954

The upper bounds on the time delay obtained from Theorem 4 are listed
in Table 2. The results for Fridman & Shaked (2002) in the table were also
obtained by combining Lemma 1 in their paper with Lemma 1 in this paper.
It is clear that our results are significantly better than those in Fridman &
Shaked (2002). In particular, when g = 0.9, the method in Fridman & Shaked
(2002) fails; but the upper bound 0.2420 is obtained by using Theorem 4 in
this paper.

Table 2
Allowable time delay (Example 6).
u 0 0.5 | 09
Fridman & Shaked (2002) | 0.6812 | 0.1820 | -
Theorem 4 0.8435 | 0.2433 | 0.2420

5 Conclusion

This paper presents a new method of determining delay-dependent stability
t

criteria that takes the relationship between z(t — d(t)) and z(t) — / x(s)ds

t—d(t)
into account. Some free weighting matrices that express the influence of these
two terms are determined based on linear matrix inequalities, which makes
it easy to choose suitable ones. It was shown that the criteria in Moon et al.
(2001) are a special case of this new method, and that the new method is less
conservative than existing ones. Finally, some numerical examples suggest that
the method presented here is very effective and is a significant improvement
over existing ones.
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