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Abstract. A design method for digital tracking control is described and applied to control an arm robot with
structured uncertainties. A two-degree-of-freedom control system configuration provides the desired feedback and
input-output performances independently. Regarding controller design, first, sampled-data ., control and linear
matrix inequality approaches are used to design a reduced-order output feedback controller. Then, the feedforward
controller is parameterized based on the feedback controller, with the free parameter being chosen based on a preview

strategy.

1 Introduction

A two-degree-of-freedom (TDF) control system configuration (e.g., [1,2]) provides tracking control with good closed-
loop and tracking performances independently.

Many mechatronic systems are modeled as a linear continous time-invariant system (the nominal plant) with
continous-time uncertainties. The use of a microcomputer device as a controller makes the sampled-data control

system periodic, even if both the plant and controller are time-invariant. This makes it difficult to synthesize the
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sampled-data system. Note that sampled-data H., control, which handles the continuous uncertainties of a plant
directly, has provoked a great deal of interest (e.g., [3,4]), and that the performance of a control system can be
improved by constructively using information about future inputs [5-7].

This paper integrates TDF control, sampled-data ., control and preview control into a new design method for
a digital tracking control system for a continuous plant with structured uncertainties. The design of the feedback
controller is formulated as a sampled-data H., control problem. Since the order of an H., controller is usually very
high, the results in [8] are used to reduce it. The feedforward controller is parameterized based on the feedback
controller, and an optimal preview tracking feedforward controller is constructed. This design method was applied to

the positioning control of an arm robot [9] to demonstrate the validity of the method.

2 Problem Formulation

Consider the TDF tracking control system configuration in Fig. 1, which is a slight extension of one proposed by Hara
and Sugie [2]. P(s) is a plant with structured uncertainties:

ip(t)=(Ap+@T()Va)zp(t)+(Bp+eL(t)Vp)ur(l),
y(t)=Cpap(t),

(1)

where zp(t) € R"?, y(t) € R and up(t) € R are the state, output and control input of the plant, respectively. Note
that Ap, Bp,Cp,®,¥ 4 and ¥p are constant real matrices, and ['(¢) is an unknown bounded matrix (I'7 (#)T'(t) < I)
that represents the time-varying parameter uncertainties. Without loss of generality, Cp = [cp1 0], cp1 # 0
(cp1 € R) is assumed. The nominal plant, Py(s), is given by the triplet (Ap, Bp,Cp).

Let the reference input be (A := z71)

_ ) X
) = o5 T =3

' 2
SR\ =1+ A+ ...+ GEAL (2)

with all the roots of ¢r(A) = 0 being in the closed unit circle, where 1/¢r()) is the generator of the reference input

and 7(A) is the initial function. Then, the internal model of the reference input, Mg(A), is

( wgli+ 1] = Agzrli] + Brerli],
0 1 0

Ap=1| ' € RIXT, 3
f o 0 1 ®)

oL —¢r-1 ... —P1
Br=1[0 ... 0 1]" e RE*L

\

This paper considers the following design problems.

(a) Design a reduced-order feedback controller Ka(A) (K2(A)=[Kap(A) Kar(N)], upli] = K2()) yli] ) with an

zRli]
order less than np, that robustly stabilizes the control system in Fig. 1.

(b) Design a feedforward controller K;(\) that yields the desired nominal input-output tracking performance.



3 Design of Feedback Controller

Redrawing Fig. 1 with r[i] = 0 gives Fig. 2. The new signals v(¢) and w(t) are defined to be the input and output
of the uncertainty I'(¢), respectively; and v, (t), vp(t) and vg[i], are the control input, and the states of the plant and
internal model weighted by positive semi-definite matrices Q,l/ 2, Q}DN and Q% 2, respectively.

Applying the small gain theorem of a sampled-data system [10] to the control system in Fig. 1 yields the following

condition for robust stability:

l|lv(@)]]2
[|Gp|lco := sup 1. (4)
w(t)eLs [[w()]|2
To guarantee robust stability and obtain the desired closed-loop performance, we extend the controlled output to be
T
Vg 1= [ v(t) vu(t) wvp(t) wvgli] ] . Then, the design problem for the feedback controller can be formulated as:

Find a reduced-order feedback controller Ko(\) that internally stabilizes the generalized plant Pgs:

il | =Ps {:’:’E )]} 6)
zR[i]

and satisfies ||Gpglloo < 1, where Gps = Ps* K2(A\) = Ps11+Ps12Ka2(A)[I — PsaaK2(A\)] 1 Psay is the linear fraction
transformation (LFT) of Ps and K»()\), and Ps is given by

[ Ap -BpS.Cp|0: 0 ]
0 Ap o Bpi.
0 Uy 0! UpH,
Psi1 Psi2 0 0 0 11/27-[7
Ps= lp P ]: 0 1/2 0 0 (6)
S21 522 P ,
12 0 0 0
0 scor o0
1L 0 0 0

Note that the generalized plant Ps contains both continuous and discrete parts. We first convert the design problem

for the feedback controller to an equivalent discrete-time H, control problem by the following steps:

- T
Step 1 Partition the generalized plant Pg in Fig. 2 into two sub-systems: a continuous subsystem, Pc(s) : [w(t) " up(t)
- !

T ; ; T
= [v(t) va(®) wp(t) | y(t) | sandadisoretesubsystem, Po(A) : [yl upli]| = [uplil valil ! olil zali]] -

Step 2 Lift the continuous sub-system Pc(s) and obtain the equivalent finite-dimensional discrete-time time-invariant

system Pc())

Step 3 Combine Po(\) with the discrete sub-system Pp(\) using an LFT to obtain the equivalent generalized plant
P.(A) = Pc(X) x Pp(N).

Now, the design problem becomes to find a reduced-order feedback controller K»(\) that internally stabilizes the
equivalent discrete-time generalized plant P,()\) and satisfies ||P.(A) % K2(A)||oo < 1. If the result of Gahinet and
Apkarian [11] were directly used to find an H, controller, the order of the feedback controller would generally be
nr, = L+ np. To design reduced-order feedback controllers, we apply the results in Xin et al. [8] and obtain the

following,.



THEOREM 1 Suppose the discrete-time Ho, control problem for the generalized plant P.(\) is solvable, then a

feedback controller, K5(\), with an order less than or equal to np — 1 can be constructed.

4 Design of Feedforward Controller

Let the coprime factorizations of the nominal plant Py(\) and the local feedback controller Kop(\) be Py(\) =
Np(AN)/Dp(N\); Kop(A\) = Nogx(N)/Dak(N); Np(A), Nak (X)), Dp(X), Dok (X)) € R[], where R[] is a ring of polynomi-
als in A. Then, the transfer function of Py(\) with local feedback Kap(A) is G(A) = Py(A)/[1 + Kap(A)Fy(N)]. Also,

let its coprime factorization be
_ Ne(V)
Da(N)’

From Fig. 1, it is clear that the transfer functions from r[i] to y[i] and from r[i] to upli] are

G(A)

Na(A), Do (M) € R[AL (7)

Gyr(A) = Na(N)EK1(N); (8)
GUPT‘(A) = DP(A)DQK(A)KI (>‘)7 (9)

respectively. The transfer function of the weighted Eq. (9) is

Dyu(A)

Guwr(/\) = Wu(A)Gupr(A) = Nu(>\)

KI(A)a (10)

where Ny (), Dy(A) € R[A] are assumed to be coprime, and W, () is a selected stable weighting transfer function.
Equations (8) and (10) show that the desired nominal input-output performance can be achieved by choosing a
suitable feedforward controller, K (A). In many designs, K;()) is chosen from RH.,. However, in this paper, the
assumption that information about future inputs can be used allows the class of K7()\) to be expanded from RH,, to
the stable improper class, R (a set of real-rational functions in A which have no poles in the closed unit circle except

for the origin). In this paper, K1()) is designed to satisfy the following conditions:

(1) Deadbeat condition: The tracking error e(A) = r(\) — y(A) = i e;\" is a finite polynomial in A and z. i.e.,
e(\) € RI\JURJ:]. o
(2) Low-ripple condition: The transfer function (10) is a finite polynomial in A and z. i.e., Gy, »(A) € R[]A]UR][2].
Decomposing Ng(\) and D, () into
Na=NEOING (V) D) =D (N)Dz (), (11)

where N/, (A) and D} (X) (N5 (A) and D, () denote polynomials with roots in/on (outside) the closed unit circle.
And let M(X) € R[] be the greatest common divisor of N (A) and Dy (A). Then, all the feedforward controllers that

satisfy the low-ripple condition are

_ N 5 -
Ki(\) = MO Ki(N), Ki(\) € RINJUR[z]. (12)
Substituting Eq. (12) into Egs. (8) and (10) yields
G =NWELN;  NN= TN, €RIAL
(13)
Gunr N =DWELN; D)= €RIN



Thus, the problem of designing the feedforward controller becomes that of designing K()) such that the deadbeat
condition is satisfied.

Without loss of generality, assume

D) =ap+ a1 A+ -+ a, A" ag,a, #0,
N(A) = A"b(N), (14)
b(A) = by + by A+ -+ DA bo, b # 0.

From the interpolation theorem, the K;()) in (13) that yields low-ripple deadbeat control with a minimum settling-

time is given by 1 dr(N)F*(N)
R
ST ORI Y

R[Al, (15)

where
POV =f+ X+ 4 fo Amtt (16)

and the coefficients are determined by the following steps. (For simplicity, we assume that b(\) = 0 has only simple

roots, which are denoted by A1, A, -+, \;.)

Step 1 f§, fr, -+, f5_, are determined by ¢r()\) and the m-multiple original zero of N(A):

IfL>m-1,
£ 1 0 "1
f* ¢1 0
= RE (17)
o Gm-1 - P11 0]
and if L <m —1,
c ] o 01 '
T o1 - 0
- (18)
i 2
N L T AT B
Step 2 f, foi1> s frpi—1 are determined by ¢r(A) and the I-simple zeros, A1, Aa, -+, A1, of N(A):
£ LA AT g0
) 1 A - A! 9(A2)
= O (19)
fra] L1 A N L

where



Based on the above results, the preview feedforward controller can be parameterized by

K (N =K\ +or(VK1(N), K (\)eR[AURZ, (20)

where K#()) is the minimum settling-time deadbeat controller and K ()) is any polynomial in A and z.
To design a K1 (\) € R[\]UR][z] that optimizes the transient response, first, choose two appropriate positive integers,

p (the parameter related to the settling-time) and ¢ (the number of preview steps), and a non-zero polynomial

Ki(\)=k_p NP+ ki Ao+ ki 2+ - -+ Ey 20

- - . X (21)
:ZQ(k_p)\P+<I+. cod koA - -—l—kq)::Zqu()\),
and let ngk1 =p+q, Ly =L +1+ngi and Lg = L +n+ngki1. Then,
0 o r(A)
o) = [1= NOK (]2
R Lo—1 ) (22)
=y [Aq—m f*(A)F()\)—b(A)F(A)Kl()\)] =21 3 e\
=0
i () = Guy r(F(Y) = DL () L
DR () o (23)
T v PN
- o) L 4+ 29DV K1 (V)
are obtained from Egs. (2), (14), (15) and (20). Decomposing the first term in the last equation of Eq. (23) yields
DNFNEF(N) _ BN
Pr(A) ~ ¢r(N) +old),
B = Bo+Bd+ -+ B At (24)

ad) =ag+ ar A+ -+ ap o A2,
So, the transient part of the weighted control input is

Auw (N) = 29 [)\qa()\) n D(A)f(A)kl(A)]
Led . (25)
=21 Z AEWZ'/\Z.

The performance index describing the transient response is defined to be

Lg—1 LE—I
J = e +p° Y Aujy,. (26)
=0 =0
If we define
( Lgfpfz
N = Y EN =TT )R(N,
i=LU€7p72
Ay (N) = > Aajy N = Ma(d),
] (21)

0N == D X =bN)F(N),
Lo

£ = Z &A= D(A)F(N),

then, according to the s optimization method, the K in (21) that minimizes J is given by the following theorem.



THEOREM 2 The coefficient vector of K(\) € R[\]U RJ[z] that minimizes the performance index .J in (26) is

[ky - ko koy - k_p)t =F'Hy, (28)
where
0
R=]eor —=r ]| _|. (29)
=
E*
F=|o" =" (30
—pAUYy

0= 0L+l—1 00 = RLoX(nK1+1)’ (31)

L 0 Or+1-1
S 0 -

E=|lr4n - & | € REeX(math, (32)
L O §L+n—1—
* —% —x S T
Er=[e; e - el,_p o Opu], (33)
* — - T
AUy =[Atg, - AUy (1, p_) 0pt1] (34)

with elements of the matrices and vectors of Eqs. (31) - (34) being given by Eq. (27). The minimum of J is

Juin = Jar — FY FT P,y = ||EX|I5 + p* AU 5. (35)

5 Simulation and Experimental Results

We applied the design method explained in Sections 3 and 4 to the positioning control of an arm robot (Fig. 3) and
employed a proportional-positioning minor control loop in the plant to make control easy. The mathematical model

of the plant is
0

ﬂ Up(t),

. (g — 0 1 .
ip(t) = [—ﬂ _Q]QCP()Jr

y(t) =[1 0]zp(t),

(36)

where y(t), zp(t) := [y(t) 3(t)]" and up(t) are the position of the arm, the state of the plant and the voltage
command, respectively. Variations in the inertial load etc. are reflected in parameters o and 8. Without an additional
inertial load, ap; = 8.33 and By = 69.4. Brass rods were used to simulate different loads. For the heaviest load

(diameter: 15 mm; length: 10 mm), a,, = 4.17 and 3, = 34.7. So, @ and 8 can take the following values & € [, , anr]



and 3 € [Bm, Bum]. Let

(a=(ar+am)/2  Gu=(ar—am)/2,
B:(ﬁM+6m)/2§ 6ﬂ:(6M_ﬁm)/2:
0 1
A R ]
_ﬁ —Q )
lo 0] ﬁ(si 0
= ; r=1 " ,_al
1 1 0 CE(SCM
_6 o
| O] - ‘”’].
\ 0 —dq 0

Then, the plant (36) can be expressed in the form of Eq. (1). The nominal plant is @ = 6.25 and 3 = 52.1.
We designed TDF tracking controllers that robustly stabilize the control system for which the output tracks the
reference input
27

(1) = sin 22t + sin ¢
WL RS W]

without steady-state error at the sampling points. For a sampling period of 7 = 0.01 s, the internal model of the
reference input is given by

Hr(A) =1—3.9966A+5.9932)% —3.9966\% + \*. (37)

A feedback controller was designed for @, = 1,Qp = diag{1,0},Qr = I4. Theorem 1 yields an output feedback

controller with an order of one (np — 1 = 1). The resulting feedback controller K»()) is

Ak2 | Bk

Ck2 | Dk
Agy=—0.7548; Cry=81.48,
Br2=[9.065 0.3251 —1.064 1.171 —0.4335],
Dgo=[-613.5 —84.33 275.7 —-302.8 112.0],

Ky(\)=

and the controller Kop(A) is
[ —0.7548 ‘ 9.065 ]

Far) = [ 81.48 ‘ —613.5 J '

A feedforward controller was designed for the nominal plant with the local feedback controller

_0.01A (2.009\% + 4.713X + 2.717)
A% +2.730\2 + 2.806)\ + 11.74
for p =1 (Eq. (26)). The weighting function W, (A) = Dg(\)/Dp(A) was selected because it produced the smallest
tracking error and control input in our trials.

The performance index for the feedforward controller with the minimum settling-time is Jy; = 3929. Since Jyin
decreases monotonically with respect to p and ¢, and calculations show that, to minimize the performance index,
increasing ¢ is much more efficient than increasing p, first, we chose p = 4 and ¢ = 0 to design a feedforward controller
without preview. The performance index was Jyi, = 949.5. Next, we chose p = 4 and ¢ = 4 to design a preview

feedforward controller. The performance index was reduced to Jynin = 7.201, which is much smaller than the index



without preview. The resulting feedforward controller is given by

Ng1(A)
1+ 0.7548)\°
Nii1(A\)=12.822*—15.572%—4.5912%2+301.02

—27.68—64.54\—4.726 A2+ 18.18\3 +1.468)\*
—6.1420° —1.791\4+12.03)\7 —6.343)8.

Ki(\)=

The simulation results (Fig. 5) show that, for the nominal plant, the tracking error is very low when the reference is
input, and the applied voltage during the transient response is moderately restricted. For the heaviest inertial load,
the system still remains stable and its output tracks the reference input without steady-state error.

The experimental system is shown in Fig. 4. Figure 6 shows the results for the heaviest load. Just as for the
simulation results, the control system is stable even when the load is changed; and during the transient response,
the tracking error is very low. On the other hand, since the experimental system was originally designed for student
practice, the precision is not very high (optical encoder: 16 cycles per turn; gear box: 64.8:1). The voltage applied to
the motor reached saturation (£5 V), and the influence of the dead zone was marked. For these reasons, the response
was not as good as the simulations; but the features of the design method, namely, the robust stability resulting from
the sampled-data H., control and the quick response due to the preview were demonstrated by the experimental

results.

6 Conclusions

This paper describes a design method for digital tracking control systems for a continuous plant with structured
uncertainties. A TDF tracking control system configuration is employed. Regarding the feedback controller, in order
to robustly stabilize a plant with structured uncertainties, the design problem is first formulated as a sampled-data
Hoo control problem, and then transformed into an equivalent discrete-time ., control problem. A reduced-order
output feedback controller with an order less than that of the plant has been designed. The feedforward controller is
parameterized based on the feedback controller, with the free parameter being chosen to achieve the desired transient
response using a preview strategy. The design method was applied to the control of an arm robot, and the results of
both simulations and experiments demonstrate that the integration of a TDF control system configuration, sampled-

data H., control and preview control is a powerful tool for the control of mechatronic systems.
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Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Figure 6.

Captions of Figures

Configuration of two-degree-of-freedom robust tracking control system.

Design of feedback controller.

Arm robot.

Photograph of the experimental system.

Simulation results of optimal preview response for the nominal plant (solid) and the heaviest inertial load
(dotted).

Optimal preview response for the heaviest inertial load (experiment).
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Figure 1: Configuration of two-degree-of-freedom robust tracking control system.

Figure 2: Design of feedback controller.
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Figure 6: Optimal preview response for the heaviest inertial load (experiment).
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