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Abstract 
The final step in zinc hydrometallurgy is the electrolytic process, which involves passing an 
electrical current through insoluble electrodes to cause the decomposition of an aqueous zinc 
sulfate electrolyte and the deposition of metallic zinc at the cathode. For the electrolytic 
process studied, the most important process parameters for control are the concentrations of 
zinc and sulfuric acid in the electrolyte. This paper describes an expert control system for 
determining and tracking the optimal concentrations of zinc and sulfuric acid, which uses 
neural networks, rule models and a single-loop control scheme. The system is now being used 
to control the electrolytic process in a hydrometallurgical zinc plant. In this paper, the system 
architecture, which features an expert controller and three single-loop controllers, is first 
explained. Next, neural networks and rule models are constructed based on the chemical 
reactions involved, empirical knowledge and statistical data on the process. Then, the expert 
controller for determining the optimal concentrations is designed using the neural networks 
and rule models. The three single-loop controllers use the PI algorithm to track the optimal 
concentrations. Finally, the results of actual runs using the system are presented. They show 
that the system provides not only high-purity metallic zinc, but also significant economic 
benefits. 
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1. Introduction 
The three basic steps in the production of zinc by hydrometallurgy are leaching, purification 
and electrolysis. The electrolytic process is the final step, and involves passing an electrical 
current through insoluble electrodes to cause the decomposition of an aqueous zinc sulfate 
electrolyte and the deposition of metallic zinc at the cathode (Mathewson, 1959; Zhuzhou 
Smeltery, 1973). The control objectives for this process are to recover high-purity metallic 
zinc from the electrolyte, and to reduce the electrical power consumed during recovery. To 
achieve these, it is imperative to maintain the optimal electrolysis conditions. This requires 
effective process control. 
 
The electrolytic conditions are mainly affected by the process parameters, such as the 
concentrations of zinc and sulfuric acid in the electrolyte, the current density at the cathode, 
and the temperature of the electrolyte. To obtain high-purity metallic zinc, these parameters 
must be controlled within specific ranges. On the other hand, the power consumption is 
mainly reduced by improving the current efficiency, which is defined to be the ratio of the 
actual amount of zinc obtained to the theoretical value for the same current and time. 
Empirical knowledge and statistical data on the process show that the current efficiency 
depends mainly on the process parameters, with the concentrations of zinc and sulfuric acid 
being the most important ones for standard operation. The key problem in process control is 
to determine the optimal concentrations of zinc and sulfuric acid, and to track them, so as to 
obtain high-purity metallic zinc and improve the current efficiency as much as possible. 
 
The conventional method involves classical control techniques. It only tracks fixed 
concentrations of zinc and sulfuric acid, and makes adjustments by adding new electrolyte to 
the process. The concentrations are selected in advance from experience. The amount of new 
electrolyte is computed solely from the mathematical models obtained from the main 
chemical reaction equation (Gui and Wu, 1995; Tang, et al., 1996). Since fixed concentrations 
of zinc and sulfuric acid are not usually optimal for the reactions involved, and the 
mathematical models neither consider variations in the reaction conditions, nor describe 
complex relationships among the current efficiency and the process parameters, it is difficult 
to achieve the desired control performance by using this method. To improve the control 
performance, it is important to utilize empirical knowledge and statistical data on the process. 
 
Artificial intelligence techniques are steadily advancing and now constitute a powerful 
method of controlling complex processes; and their extensive application to engineering 
problems has proven their effectiveness. Expert systems and neural networks are two rapidly 
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growing areas. Expert systems have been widely studied (Hayes-Roth, et al., 1983; A strom
o

&& , 

et al., 1986; Jackson, 1986; Liebowitz, 1988; Mockler and Dologite, 1992; Passion and 
Lunardhi, 1996). Such systems use the empirical knowledge of human experts in a specific 
domain to solve a problem, and have been used for process control (Efstathiou, 1989; 
Ishizuka and Kobayashi, 1991; The Society of Chemical Engineers, 1993; Wu, et al., 1996). 
Neural networks are powerful tools for the modeling, identification and control of complex 
systems (Rumelhart, et al., 1986; Narendra and Parthasarathy, 1990; Piovoso, et al., 1992; 
Hagan, et al., 1996). Among them, the backpropagation network has been used the most in 
process control applications; and it is particularly useful in approximating the nonlinear 
relationships of complex processes (Hornik, et al., 1989; Su and McAvoy, 1997). The 
electrolytic process involves complex chemical reactions, and the relationships among the 
process parameters and the current efficiency are nonlinear. But the process generally runs 
within a specific operating range, and the complex relationships can be described using neural 
networks and a number of rule models based on the chemical reactions involved, empirical 
knowledge and statistical data on the process. This means that expert systems and neural 
networks should provide good control of the electrolytic process. 
 
This paper describes an expert control system using neural networks (ECSNN) to solve the 
key problem in the control of the electrolytic process. ECSNN is now being used in a 
hydrometallurgical zinc plant. It employs four backpropagation networks and rule models to 
determine the optimal concentrations of zinc and sulfuric acid, and uses a single-loop control 
scheme to track them, so as to obtain high-purity metallic zinc and yield the maximum current 
efficiency. Both the backpropagation networks and rule models reflect the nonlinear 
relationships among the current efficiency and the process parameters. They fully considered 
the chemical nature and complexity of the process. 
 
This paper first describes the electrolytic process and the architecture of ECSNN. Second, 
backpropagation networks and rule models are constructed based on statistical data and 
empirical knowledge. Third, an expert controller for determining the optimal concentrations is 
designed through a combination of the backpropagation networks and rule models. Three 
single-loop controllers using the PI algorithm are employed to track the optimal 
concentrations. Fourth, the system implementation and the results of actual runs are presented. 
Finally, some conclusions are given at the end. 
 

2. Process description and system architecture 
The electrolytic process that was the subject of this study uses low-zinc, low-acid electrolysis 
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technology. ECSNN is designed for this process. 
 
2.1. Process description and control problem 
The electrolytic process is shown in Fig. 1 (Zhuzhou Smeltery, 1973). It employs a mixing 
cell and also a number of electrolyzing cells arranged in four cascade series, with serial 
connections in each series. The electrolyte is a mixture of new electrolyte and spent 
electrolyte, and is continuously added to the electrolyzing cells. The flow rate of new 
electrolyte can be adjusted by regulating the speeds of three pumps, while that of the spent 
electrolyte is largely fixed. Passing an electric current through the cathodes and anodes of the 
electrolyzing cells causes chemical reactions to occur. The basic reaction is  

↑++=+ 24224 OSO2H2ZnO2H2ZnSO .         (1) 
This results in the deposition of metallic zinc on the cathode, the release of oxygen at the 
anode, and the formation of sulfuric acid through the combination of hydrogen and sulfate 
ions. Part of the spent electrolyte containing sulfuric acid is cooled and cycled back into this 
process, and part is returned to the leaching process. 

[Insert Fig. 1 about here] 
 
The input of this process is new electrolyte. The process requires that the constituents of the 
new electrolyte be kept in the standard allowable ranges shown in Table 1. An expert control 
system has been developed to meet the requirements regarding those constituents (Wu, et al., 
1996). 

 [Insert Table 1 about here] 
 
The output of this process is zinc, which is also the product of the process. To obtain 
high-purity metallic zinc, the process parameters influencing the electrolysis conditions, such 
as the concentrations of zinc and sulfuric acid in the electrolyte, the current density at the 
cathode, and the temperature of the electrolyte, must be closely controlled. Empirical 
knowledge and statistical data on the process show that the following constraints must be 
satisfied to control these parameters. 

(1) The concentrations of zinc and sulfuric acid should be 45 - 60 g/l and 150 - 200 g/l, 
respectively, and the ratio of the hydrogen ion concentration to the zinc ion 
concentration should be 3.0 - 3.8. 

(2) The temperature should be 30 - 38 C° . 
(3) The current density should be 450 - 600 A/m2. 

 
Constraints (2) and (3) have been satisfied by an air cooling system established for the spent 
electrolyte cycled back into this process, and by a hierarchical control system designed to 
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control the current density (Wu, et al., 1993), respectively. So, it is clear that, from the 
standpoint of process control, satisfying constraint (1) is the key to obtaining high-purity 
metallic zinc. 
 
On the other hand, the current efficiency is mainly affected by process parameters, such as the 
temperature of the electrolyte, that influence the electrolysis conditions. To improve the 
current efficiency as much as possible, we need to optimize the concentrations of zinc and 
sulfuric acid under the condition that constraint (1) is satisfied. Therefore, the key problem in 
process control is to determine the optimal concentrations of zinc and sulfuric acid for the 
given temperature and current density, and to track them, so as to satisfy constraint (1) and 
yield the maximum current efficiency. 
 
The control input of this process is the flow rate of new electrolyte that is mixed with spent 
electrolyte. Adjusting the flow rate of new electrolyte provides control of the concentrations 
of zinc and sulfuric acid in the electrolyte. Thus, it is necessary to compute and track the 
target flow rate of new electrolyte to achieve the optimal control of the concentrations of zinc 
and sulfuric acid. 
 
2.2. Control strategy and system architecture  
An expert control strategy using neural networks is described that achieves the control 
objectives of the electrolytic process. It uses an expert controller to determine the optimal 
concentrations of zinc and sulfuric acid within specific ranges for the measured temperature 
and current density and to compute the target flow rate of new electrolyte added to the process. 
A single-loop control scheme is employed in this strategy to track the target flow rate of new 
electrolyte. 
 
Based on this expert control strategy, ECSNN was designed, yielding the architecture shown 
in Fig. 2. The main components are an expert control computer system containing an expert 
controller, three 761 series single-loop controllers made by the Foxboro Company and an 
automatic measurement system for on-line measurement. The expert controller is connected 
to the 761 controllers by means of a special wiring concentrator and voltage converter, and 
communicates with the automatic measurement system by means of a manufacturing 
automation protocol. The three control loops consist of the 761 controllers, inverters, pumps 
and flow meters. 

[Insert Fig. 2 about here] 
 
The expert controller uses a forward chaining strategy based on a combination of 
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backpropagation networks and rule models to determine the optimal concentrations and 
compute the target flow rate of new electrolyte, so as to obtain high-purity metallic zinc and 
yield the maximum current efficiency. 
 
The 761 controllers use the PI control algorithm to track the target flow rate of new 
electrolyte, so as to ensure that the actual concentrations of zinc and sulfuric acid match the 
optimal values. More specifically, the 761 controllers regulate the speeds of three pumps by 
means of inverters. 
 
The automatic measurement system uses automatic concentration analyzers, temperature 
meters, flow meters and current meters, to measure the concentrations, temperatures, flow 
rates, and current density. 
 

3. Neural networks and rule models 
To determine the optimal concentrations of zinc and sulfuric acid, the relationships among the 
current efficiency and the process parameters must be established. However, the relationships 
have very strong nonlinearity, which make them difficult to describe using mathematical 
models alone. In the proposed expert control strategy, they are described using 
backpropagation networks and rule models based on the chemical reactions involved, 
empirical knowledge and statistical data on the process.  
 
3.1. Neural networks and training 
Among the process parameters influencing the electrolysis conditions, the temperature of the 
electrolyte is critical. The statistical data show that the of the process can be described very 
well by dividing the range of operating temperatures into four smaller ranges centered at 
31°C, 33°C, 35°C and 37°C. Those data also show that the electrolysis characteristics are 
different in each range. To describe these different characteristics, we construct four 
backpropagation networks based on statistical data for the four ranges. 
 
The four backpropagation networks use the three-layer structure shown in Fig. 3. The input 
layer, hidden layer and output layer have three neurons, nine neurons and one neuron, 
respectively. xI  is the current density, xZ  and xS  are the concentrations of zinc and 
sulfuric acid, respectively, and η I  is the current efficiency. 

[Insert Fig. 3 about here] 
 
Another reason for using four backpropagation networks instead of just one is to approximate 
the nonlinear relationships among the current efficiency and the process parameters using the 
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smallest possible number of neurons and a simple formula, so as to enable quick computation 
of the current efficiency. 
 
Let xT  be the temperature of the electrolyte. To simplify the construction of the 

backpropagation network and the determination of the optimal concentrations of zinc and 
sulfuric acid, the four temperature ranges are crisply specified as 30 32≤ <xT , 32 34≤ <xT , 
34 36≤ <xT  and 36 38≤ ≤xT . The corresponding four backpropagation networks, which 

are denoted by BP3L1, BP3L2, BP3L3 and BP3L4, are constructed based on statistical data 
captured from experimental data and historical data for the four temperature ranges. 
 
It is clear that, for a given temperature, using the appropriate backpropagation network for 
that temperature yields a good estimate of the current efficiency from the given current 
density and concentrations of zinc and sulfuric acid. 
 
The expressions for describing each backpropagation network have the same structure. In the 
input layer, the inputs of the three neurons are xI , xZ  and xS , and the outputs are the same 

as the inputs. In the hidden layer, the input and output of the i-th neuron are defined to be 
x w x w x w x bi i I I i Z Z i S S i= + + +, , ,   ,           (2a) 

and 
y xi i= tansig( ) ,               (2b) 

where wi I, , wi Z,  and wi S,  are the weights of the signals from the three neurons of the 

input layer to the i-th neuron of the hidden layer, bi  is the bias of the i-th neuron of the 
hidden layer, and tansig( )⋅  denotes the tan-sigmoid transfer function, which has the form 

tansig( )x
e x=

+
−−

2
1

12 .             (3) 

This function maps the input to the interval (-1, 1) (Hagan, et al., 1996). In the output layer, 
the input and output of a neuron are defined to be 

x w y bO i O i O
i

= +
=
∑ , 

1

9

,              (4a) 

and 
η I Ox= ,                (4b) 

where wi O,  is the weight of the signal from the i-th neuron of the hidden layer to the neuron 

of the output layer, and bO  is the bias of the neuron of the output layer. 

 
Expressions (2) and (4) can be combined into the following form: 

η I i O i I I i Z Z i S S i O
i

w w x w x w x b b= + + + +
=
∑ , , , ,( )    tansig

1

9

.      (5) 
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It express the relationship among the current efficiency, the concentrations of zinc and 
sulfuric acid, and the current density for a given temperature range. The weights wi I, , wi Z, , 
wi S,  and wi O, , and the biases bi  and bO  are determined by training the backpropagation 

network. 
 
To determine the weights and biases of BP3L1, BP3L2, BP3L3 and BP3L4, a number of 
statistical data are acquired from experimental and historical data on the process 
corresponding to the four temperature ranges. The data for each range are used to train the 
corresponding backpropagation network. In the training, the network inputs are xI , xZ  and 
xS ; the network output is η I ; and the target output is the actual value of the current 
efficiency, which is denoted by η A . The network performance function, J, is the average of 

the squared errors between the network outputs and the target outputs, i.e., 

J
N

j jI A
j

N

= −
=
∑1 2

1

[ ( ) ( )]η η ,             (6) 

where η I j( )  and η A j( )  are the j-th network output and the j-th target output, respectively, 

and N is the total number of target outputs used in training. 
 
A basic backpropagation training algorithm (Rumelhart, et al., 1986; Hagan, et al., 1996) is 
used to determine the weights and biases of a backpropagation network. It employs the 
gradient of J to adjust the weights and biases during training, so as to minimize J. The weights 
and biases are moved in the direction of the negative gradient. Let x kwb ( )  be the vector of 
current weights and biases, g kwb ( )  be the current gradient, and γ wb k( )  be the current 

learning rate. Then the training algorithm can be written as 
x k x k k g kwb wb wb wb( ) ( ) ( ) ( )+ = −1 γ ,          (7a) 

g k J
x

kwb
wb

( ) ( )=
∂
∂

,              (7b) 

where k is the number of iterations. A batch training method is used to implement the above 
gradient descent algorithm. In this training, the weights and biases are updated only after all 
the training data have been fed to the network. The gradients calculated during each training 
session are added together to determine the changes in the weights and biases. 
 
The weights and biases of each backpropagation network are determined by off-line training. 
When the environment and operating conditions of the process are changed, it is necessary to 
determine the weights and biases afresh. The weights and biases thus obtained are input into 
ECSNN through an on-line man-machine interface. 
 
3.2. Rule Models 
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In the electrolytic process, there is an interaction between the concentrations of zinc and 
sulfuric acid in the electrolyte because they are determined in part by the flow rate of new 
electrolyte. This interaction makes it difficult to determine the optimal concentrations by 
using BP3L1, BP3L2, BP3L3 or BP3L4 alone. To determine the best concentrations of zinc 
and sulfuric acid that can be obtained by adjusting the flow rate of the new electrolyte and 
that will yield high-purity metallic zinc and the highest possible current efficiency, we need to 
construct rule models based on empirical knowledge on the process. 
 
All rule models use the following production rule form (Hayes-Roth, et al., 1983; Jackson, 
1986; Liebowitz, 1988; Mockler & Dologite, 1992) 

R#:  If  condition  Then  action,          (8) 
where R# is the number of the rule model, condition is the operating state of the process or a 
logical combination thereof, and action is the conclusion or operation. 
 
In constructing rule models, empirical knowledge is acquired mainly from interviews with 
experienced engineers and operators working on the process. For instance, an efficient 
empirical method of determining the optimal concentrations of zinc and sulfuric acid in the 
electrolyte is used. More specifically, the optimal ranges of the concentrations are first 
determined from the temperature of the electrolyte and the current density at the cathode. 
Next, an initial concentration of zinc is selected from the optimal range, and the appropriate 
target flow rate is computed for the new electrolyte. Then, the concentration of sulfuric acid in 
the electrolyte is estimated under the assumption that new electrolyte is supplied at the 
computed target flow rate. If the estimate is in the optimal range of sulfuric acid 
concentrations, then the selected concentration of zinc and the estimated concentration of 
sulfuric acid are used as optimal values. If this is not the case, the selection, computation and 
estimation procedures are repeated until optimal concentrations are finally obtained. 
 
Let xZS  be the selected concentration of zinc, xNZ  and xOZ  be the concentrations of zinc 
in the new electrolyte and spent electrolyte to be added, respectively, and QO  be the flow 

rate of the spent electrolyte to be added. Then the target flow rate of the new electrolyte is 
computed using the following empirical expression: 

Q k x x
x k x

QN
Z ZS OZ

NZ Z ZS
O=

−
−

,              (9) 

where kZ  is an empirically determined coefficient. Under the assumption that new 
electrolyte is supplied at the computed target flow rate, QN , the concentration of sulfuric acid 

in the electrolyte is estimated using the following empirical expression: 



 10

x Q x Q x
k Q QSS
N NS O OS

S N O

=
+
+( )

,             (10) 

where xSS  is the estimated concentration of sulfuric acid, xNS  and xOS  are the 

concentrations of sulfuric acid in the new electrolyte and spent electrolyte to be added, and 
kS  is an empirically determined coefficient. 

 
Rule models are used to select the backpropagation network, determine the optimal ranges of 
the concentrations of zinc and sulfuric acid, select the initial concentration of zinc from the 
optimal range, and adjust the concentration of zinc in the optimal range. Table 2 shows some 
typical rule models used to determine the optimal concentrations of zinc and sulfuric acid in 
the electrolyte. ~UZ  and ~US  are the optimal ranges of the concentrations of zinc and sulfuric 
acid, respectively. xZopt  and xSopt  are the optimal concentrations of zinc and sulfuric acid, 
respectively. QNopt  is the target flow rate of new electrolyte. ∆x  is an empirically 

determined value. 
[Insert Table 2 about here] 

 
 

4. Design of the expert controller 
An expert controller was designed based on the constructed backpropagation networks and 
rule models. It uses a forward chaining strategy that combines backpropagation networks and 
rule models to determine the optimal concentrations of zinc and sulfuric acid in the electrolyte, 
and the corresponding target flow rate of new electrolyte. The forward chaining strategy is 
implemented in an algorithm that repetitively uses the corresponding backpropagation 
network and rule models. 
 
4.1. Structure of the expert controller 
The structure of the expert controller is shown in Fig. 4. It consists of a 
characteristics-capturing mechanism, a knowledge base, a database, an inference engine, and 
a man-machine interface. 

[Insert Figure 4 about here] 
 
The characteristics-capturing mechanism manipulates process data to obtain data on 
characteristics of the process. These data are stored in a working memory, and are used by the 
database, knowledge base and inference engine. 
 
The knowledge base stores the backpropagation algorithms, rule models, empirical data and 
operating laws for the process; calculation laws; etc. The database stores the quality 
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requirements, measured data and statistical data on the process; reasoning results from the 
inference engine; etc. 
 
The inference engine gets empirical knowledge and data from the knowledge base and 
database, and uses a forward chaining strategy (Hayes-Roth, et al., 1983; Jackson, 1986; 
Liebowitz, 1988; Efstathiou, 1989; Mockler & Dologite, 1992) that combines 
backpropagation networks and rule models to determine the optimal concentrations of zinc 
and sulfuric acid, and the corresponding target flow rate of new electrolyte, so as to obtain 
high-purity metallic zinc and yield the maximum current efficiency. 
 
The man-machine interface is used to edit and modify the knowledge base, and to display and 
print the reasoning results and operating guidelines, etc. 
 
Using the appropriate backpropagation network for the temperature range containing the 
measured temperature yields a good estimate of the current efficiency based on the selected 
concentrations of zinc and sulfuric acid and the measured current density and temperature. 
Through a combination of backpropagation networks and rule models, the optimal 
concentrations of zinc and sulfuric acid are determined by maximizing the estimated value. 
 
4.2. Algorithm for determining optimal concentrations 
A flow chart of the forward chaining strategy used in the expert controller is shown in Fig. 5. 
The following operations are carried out repetitively. 
 (1) Fire and execute rule models. 
 (2) Compute the current efficiency using the selected backpropagation network. 
 (3) Select or adjust the concentration of zinc in the electrolyte. 
 (4) Compute the target flow rate of new electrolyte and estimate the concentration of 
sulfuric acid in the electrolyte. 

[Insert Figure 5 about here] 
 
The forward chaining strategy is implemented in an algorithm. The algorithm used to 
determine the optimal concentrations and compute the target flow rate is as follows: 

Step 1: Measure the temperature xT , the current density xI , the concentrations xNZ , 
xOZ , xNS  and xOS , and the flow rate QO . 

Step 2: Obtain data on the characteristics of the temperature xT  by 

characteristics-capturing, and fire a rule model such as REC1  to select the 
corresponding backpropagation network. 

Step 3: Determine the optimal ranges ~UZ  and ~US  of the concentrations of zinc and 
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sulfuric acid by computing the current efficiency based on the selected 
backpropagation network, so as to yield the maximum current efficiency. 

Step 4: Set the concentration of zinc to 

  x U U
ZS

Z Z=
+max( ~ ) min( ~ )
2

.           (11) 

Step 5: Compute the target flow rate, QN , of new electrolyte from expression (9), and 
estimate the concentration, xSS , of sulfuric acid from expression (10). 

Step 6: Check if x USS S∈ ~ . If so, execute rule model REC6  to obtain the optimal 
concentrations of zinc and sulfuric acid and the target flow rate of new 
electrolyte, and stop this algorithm. If not, go to the next step. 

Step 7: Check if x UZS Z= max( ~ )  or x UZS Z= min( ~ ) . If so, fire rule models such as 
REC4  and REC5  and go to the next step. If not, adjust xZS  so that it is in ~UZ  

by rule models such as REC2  and REC3 , and return to Step 5. 
Step 8: Determine the optimal ranges ~UZ  and ~US  of the concentrations of zinc and 

sulfuric acid by computing the current efficiency based on the selected 
backpropagation network, so as to yield the highest current efficiency, and return 
to Step 4. 

 
The optimal concentrations determined in the above algorithm are achieved by tracking the 
corresponding target flow rate of new electrolyte. 
 

5. System implementation and run results 
The ECSNN designed using the proposed expert control strategy is running in a nonferrous 
metals smeltery. It not only provides high-purity metallic zinc, but also yields significant 
economic benefits. 
 
5.1. Implementation of ECSNN 
ECSNN was implemented on an IPC 610 type computer system, and three 761 series 
single-loop controllers. It originally ran under the MS-DOS 6.22 operating system, but a new 
version runs on the Windows operating system. The functions of the expert controller were 
implemented in a program written in C language, while those of the 761 controllers were 
implemented through the controller configuration. 
 
It should be pointed out that the programs used in the expert controller were specially 
developed for the electrolyte process. Compared to programs designed on a development 
platform for expert systems, they have the advantages of quick execution and high running 
efficiency, but also the disadvantage of a long development time. 
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Special instruments are used to accurately measure different kinds of process data. More 
specifically, concentrations are measured with an X-ray fluorescence analyzer, flow rates with 
E+H electromagnetic flow meters, etc. 
 
5.2. Results of actual runs 
Some results of actual runs using ECSNN are shown in Fig. 6. The dotted lines indicate the 
constraints on the process parameters given in Section 2.1. When the concentrations of the 
constituents of the new electrolyte fall within the standard allowable ranges shown in Table 1, 
and the temperature of the electrolyte and the current density satisfy the constraints given in 
Section 2.1, the optimal concentrations of zinc and sulfuric acid in the electrolyte are 
determined by the designed expert controller and tracked by the 761 controllers. In this case, 
the electrolysis conditions are optimal and the optimal conditions are maintained. It is clear 
that the optimal concentrations of zinc and sulfuric acid and the ratio of the hydrogen ion 
concentration to the zinc ion concentration satisfy the constraints given in Section 2.1. 

[Insert Figures 6 about here] 
 
As mentioned above, the conventional method only tracks fixed concentrations of zinc and 
sulfuric acid and makes adjustments by adding new electrolyte to the process. The 
concentrations often selected are 50 g/l for zinc and 180 g/l for sulfuric acid. The flow rate of 
new electrolyte is determined solely by mathematical models obtained from the chemical 
reaction equation (1). This method cannot ensure that the process parameters are always kept 
within the given ranges. It is also difficult to maintain the optimal electrolysis conditions. In 
contrast, with ECSNN, the optimal electrolysis conditions are always maintained. This results 
in high-purity metallic zinc and low electrical power consumption. 
 
Statistical data on the electrolytic process show not only that high-purity metallic zinc is 
obtained, but also that the power consumption for electrolysis is considerably reduced. In 
particular, compared with the results for control based on the conventional method, the purity 
of metallic zinc is improved from 99.990-99.995% to 99.9999%, and the current efficiency is 
about 4.2% higher, which mean that the power consumption per ton of zinc used for recovery 
is about 200-400 kwh lower. 
 
It should be pointed out that the proposed expert control strategy only optimizes the 
concentrations of zinc and sulfuric acid in the electrolyte under the conditions that the 
temperature and current density are kept within the given ranges. From this point of view, it is 
not a global optimization and hence the effect of using ECSNN is limited. In addition, if 
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possible, the weights and biases of the backpropagation networks should be updated on line 
so that they adapt quickly to changes in the process. 
 

6. Conclusions 
This paper has described an expert control system using backpropagation networks, which is 
currently being used to control the electrolytic process of a nonferrous metals smeltery. The 
system design is based on a combination of backpropagation networks and rule models, and a 
single-loop control technique. The results of actual runs show that the designed system 
effectively controls the electrolytic process. The main features are as follows:  

(1) Backpropagation networks and rule models that express the complex relationships 
among the process parameters influencing the electrolysis conditions and the current 
efficiency influencing electrical power consumption are constructed based on the 
chemical reactions involved, empirical knowledge and statistical data on the process. 

(2) The optimal concentrations of zinc and sulfuric acid and the corresponding target 
flow rate of new electrolyte are determined by a reasoning strategy that uses forward 
chaining and combines backpropagation networks and rule models. 

(3) The optimal electrolysis conditions are maintained by tracking the target flow rate of 
new electrolyte, with the tracking being performed by a conventional single-loop 
control technique. 

(4) The designed system provides not only high-purity metallic zinc, but also significant 
economic benefits. 
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Captions of Figures 

 
 
Fig. 1. Electrolytic process. 
Fig. 2. Architecture of ECSNN. 
Fig. 3. Structure of a backpropagation network with three layers. 
Fig. 4. Structure of the expert controller. 
Fig. 5. Flow chart of reasoning using combination of backpropagation networks and rule 

models. 
Fig. 6. Some results of actual runs using ECSNN. 
 

 
Captions of Tables 

 
 
Table 1. Standard allowable ranges of constituents of new electrolyte (mg/l). 
Table 2. Some typical rule models for determining the optimal concentrations. 
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Fig. 5. Flow chart of reasoning using combination of backpropagation networks and rule 
models. 
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Fig. 6. Some results of actual runs using ECSNN. 
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Table 1. Standard allowable ranges of constituents of new electrolyte (mg/l). 
 

 Zn Cu Cd Co Ni As Sb Ge Fe 

 140000 ~ 170000 < 0.2 < 1.0 < 1.0 < 1.0 < 0.24 < 0.3 < 0.05 < 20 

 
 
Table 2. Some typical rule models for determining the optimal concentrations. 
 

 Number If Then 

 REC1  34 36≤ <xT  Use BP3L3 to determine ~UZ  and ~US , and 

select xZS  in ~UZ  

 REC2  x U x U x UZS Z SS S ZS Z∈ > ≠
~ , max( ~ ) max( ~ )  and  x x xZS ZS Z= + ∆  

 REC3 x U x U x UZS Z SS S ZS Z∈ < ≠
~ , min( ~ ) min( ~ )  and  x x xZS ZS Z= − ∆  

 REC4  x U x UZS Z ZS S= >max( ~ ) max( ~ ) and  Use the corresponding backpropagation 

network to determine ~UZ  and ~US , and select 

xZS  in ~UZ , again 

 REC5 x U x UZS Z SS S= <min( ~ ) min( ~ ) and  Use the corresponding backpropagation 

network to determine ~UZ  and ~US , and select 

xZS  in ~UZ , again 

 REC6  x U x UZS Z SS S∈ ∈
~ ~ and   x x x x Q QZopt ZS Sopt SS Nopt N= = =,  and  

 


