
ABSTRACT
The backstepping method was applied to a tank system
to control the flow and temperature at the exit. A
backstepping control law and a robust backstepping
control law were developed for the plant without and
with uncertainties, respectively. The designed control
system is asymptotically stable for the plant without
uncertainties and globally uniformly bounded for the
plant with uncertainties.

1. INTRODUCTION
Over the past few years, a considerable number of studies
have been devoted to a new control design methodology:
backstepping ([1]). Unlike feedback linearization,
backstepping can avoid the cancellation of useful
nonlinearities. So, it offers the prospect of a more
practicable nonlinear control law.

This paper describes the application of the backstepping
control strategy to a tank system to control the flow and
temperature at the exit. Mathematical models of the
system are first derived. Then, a backstepping controller
is designed for the nominal plant. However, there are
usually some uncertainties in the mathematical model
of the plant. To achieve robustness for the control system,
a robust backstepping controller is designed by improving
the backstepping control law to guarantee global uniform
boundedness.

Nomenclature

qi Rate of inflow of the water ( / )m s3

qo Rate of outflow of the water ( / )m s3

θi Temperature of the inflow (K)
θo Temperature of the outflow (K)
θa Air temperature (K)
h Height of the water level (m)
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A Cross-sectional area of the tank ( )m2

Φi Heat supplied (W)
R Equivalent heat resistance of the tank (K/W)

a Discharge coefficient of valve ( / ).m s2 5

ρ Density of water ( / )kg m3

cp Specific heat of water ( / / )J kg K

2. MATHEMATICAL MODEL OF THE TANK
SYSTEM
The tank system studied here is shown in Fig. 1. In this
system, cold water is sent to the tank from a waterworks.
The water is heated in the tank, and then sent out. The
system has two control inputs: the rate of inflow and the
heater supply. The rate and temperature of the inflow,
the rate of the outflow, and the temperature of the water
in the tank are known.

The rate of outflow is given by

dh

dt

q q

A
i o= −

, (1)

q a ho = , (2)

and

q qo m≥ > 0 . (3)

Let ΦT  be the heat that the water in the tank possesses,
Φo  be the heat that the output water takes away, ΦS  be
the heat released to the air and Φc  be the heat that the
inflow brings in, and assume that the temperature of the
water in the tank is uniform. Then we have

Φ Φ Φ Φ ΦT o s c i= − − + + . (4)
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FIGURE 1: The tank system.
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Φc p i ic q= ρθ . (8)

From the above relationships, the model of the tank can
be written as
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where

B a Acp= 2 /( )ρ .

It is clear from (9) that the tank system is a two-input
two-output nonlinear system. If we let qo  and θo  be
the desired outputs, then the control objective is to make
the outflow and temperature track them. In the design
of such control systems, the flow sub-system and the
temperature sub-system are usually considered
separately, and the correlation between the controlled
outputs is ignored. Linear control theory is mainly used
for control system design. In particular, PID controllers
are generally designed for each linearized sub-system
([2]).

In this study, we used the MIMO nonlinear model directly
so as to take the nonlinearties of the plant and the
correlation between the controlled outputs into account.
Decomposing the outputs yields
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where qoe  and θoe  are the errors between the real and
the desired outputs. If we substitute (10) into (9) and
transform the control inputs into
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then the plant model becomes

dq

dt

a

A
u

d

dt

Bc

q q

B

q q R

Bc

q q
u

B

q q
u

oe
q

oe p oe

o oe

oe

o oe

p i

o oe
q

o oe

=

= −
+

−
+

+
+

+
+















2

2

2

2
θ ρθ θ

ρθ
( )

( )
.Φ

(12)

If we let

x qoe oe
T

:= [ ]θ , (13)

and rewrite the model in the form:

dx dt f x g x u g x uq/ ( ) ( ) ( )= + +1 2 Φ , (14)

then
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(14) is the nominal model of the plant. Since it is hard
to obtain an exact model of a real plant, it is useful to
include uncertainties in the plant model as follows:
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a

A q q

B

q q

q

o oe o oe

T

/ ( ) ( ) ( )

( )
,

= + + +

=
+ +




















1 2

2

1 2 22

1

Φ ∆

∆ ∆ ∆
(16)

with



∆ ∆1 1 2 2≤ ≤δ δ, . (17)

3. DESIGN OF BACKSTEPPING CONTROL
LAWS
We first consider a plant without uncertainties. If a
Lyapunov function is defined as
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it is clear that the following control law
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makes 
dV

dt
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k kq , θ > 0 (20)

are chosen.

Now, backstepping the plant (14) gives
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A new Lyapunov function is selected:
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Then we have the following lemma.
Lemma 1: The control law
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guarantees the global asymptotic stability of the system
(21) at ( , ) ( , )q qo o o oθ θ=  for any k k1 2 0, > .
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So, if the control law is chosen to be
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That guarantees the global asymptotic stability at
( , ) ( , )qoe oeθ = 0 0 , i.e. ( , ) ( , )q qo o o oθ θ= . (QED)

Based on the above backstepping control law, a robust



backstepping control law is derived for a plant with
uncertainties (16):
Lemma 2: The control law
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guarantees the global uniform boundedness of the system:
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So, if the control law is chosen to be
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4. NUMERICAL EXAMPLE
Let the parameters of the tank system be
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The desired outputs are
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The simulation results are shown in Figs. 2 and 3.
In Fig. 2, the nominal plant is controlled by the control

law (24). The parameters of the controller are
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It can be seen that the designed control system is stable
and the outputs reach the desired values after  1000

minutes.

FIGURE 2: Simulation results for the nominal plant.

In Fig. 3, the plant is assumed to contain uncertainties,
and ∆1  and ∆2  are
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The parameters of the controller (25) are chosen to be



(30) and

FIGURE 3: Simulation results for a plant
with uncertainties.

k k∆ ∆1 2 1 0= = . (32)

The simulation results show that the designed control
system is globally uniformly bounded and the outputs
converge to the desired values after 1000 seconds.

5. CONCLUSIONS
In this paper, a mathematical model of a tank system is
first derived, and a backstepping control law is developed
for the nominal plant. Then, based on the control law, a
robust backstepping control law is developed for a plant
with uncertainties. The validity of these control laws is

demonstrated by simulations.
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