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ABSTRACT

The backstepping method was applied to a tank system
to control the flow and temperature at the exit. A
backstepping control law and a robust backstepping
control law were developed for the plant without and
with uncertainties, respectively. The designed control
system is asymptotically stable for the plant without
uncertainties and globally uniformly bounded for the
plant with uncertainties.

1. INTRODUCTION

Over the past few years, a considerable number of studies
have been devoted to a new control design methodol ogy:
backstepping ([1]). Unlike feedback linearization,
backstepping can avoid the cancellation of useful
nonlinearities So, it offers the prospect of a more
practicable nonlinear control law.

This paper describes the application of the backstepping
control strategy to atank system to control the flow and
temperature at the exit. Mathematical models of the
system are first derived. Then, a backstepping controller
is designed for the nominal plant. However, there are
usually some uncertainties in the mathematical model
of the plant. To achieve robustness for the control system,
arobust backstepping controller is designed by improving
the backstepping control law to guarantee global uniform
boundedness

Nomenclature
g  Rateof inflow of thewater (m®/s)
, Rateof outflow of thewater (m®/s)

6,  Temperature of theinflow (K)
6, Temperature of the outflow (K)
6, Airtemperature (K)

h Height of the water level (m)

A Cross-sectional areaof the tank (m?)
@, Heat supplied (W)
R Equivaent heat resistance of the tank (KAW)

a  Discharge coefficient of valve (m?°/s)
p  Density of water (kg/ m®)
C, Specific heat of water (J/kg/K)

2. MATHEMATICAL MODEL OF THE TANK
SYSTEM

The tank system studied here is shown in Fig. 1. In this
system, cold water is sent to the tank from a waterworks.
The water is heated in the tank, and then sent out. The
system has two control inputs: the rate of inflow and the
heater supply. The rate and temperature of the inflow,
the rate of the outflow, and the temperature of the water
in the tank are known.

Therate of outflow is given by
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g =avh, 2
and

0o 20y > 0. ©)

Let @; bethe heat that the water in the tank possesses,
@, be the heat that the output water takes away, @ be
the heat released to the air and @, be the heat that the
inflow bringsin, and assume that the temperature of the
water in the tank is uniform. Then we have
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From the above relationships, the model of the tank can
be written as
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B=a"/(Ac,p).

It is clear from (9) that the tank system is a two-input
two-output nonlinear system. If we let g, and 50 be
the desired outputs, then the control objective isto make
the outflow and temperature track them. In the design
of such control systems, the flow sub-system and the
temperature sub-system are usually considered
separately, and the correlation between the controlled
outputs is ignored. Linear control theory is mainly used
for control system design. In particular, PID controllers
are generally designed for each linearized sub-system

([2)-

In this study, we used theMIM O nonlinear model directly
so as to take the nonlinearties of the plant and the
correlation between the controlled outputs into account.
Decomposing the outputs yields

(o = 0o * Yoe
, =6, +6,

oe’

(10)

where g, and 8, are the errors between the real and

the desired outputs. If we substitute (10) into (9) and
transform the control inputs into
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then
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(14) is the nominal model of the plant. Since it is hard
to obtain an exact model of areal plant, it is useful to
include uncertainties in the plant model as follows:

Coix / dt = f(X) + gy (X)Uy +p(X)Ug +4
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3. DESIGN OF BACKSTEPPING CONTROL
LAWS

We first consider a plant without uncertainties. If a
Lyapunov function is defined as

V(x)- x'x == qoe —eée, (18)

itis clear that the following control law
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are chosen.

Now, backstepping the plant (14) gives
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A new Lyapunov function is selected:

(21)
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where
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Then we have the following lemma.
Lemma 1: The control law
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guarantees the global _asymptotic stability of the system
(21) at (qo’eo) = (qo’ 60) for any klvk2 >0.
Proof:
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So, if the control law is chosen to be
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That guarantees the global asymptotic stability at
(Goe: Boe) = (0,0), i.€. (0o, 65) = (T, 6,) - (QED)

Based on the above backstepping control law, a robust



backstepping control law is derived for a plant with
uncertainties (16):
Lemma 2: The control law
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guarantees the global uniform boundedness of the system:
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Using Young's Inequality
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So, if the control law is chosen to be
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state X is globally uniformly bounded. (QED)
4. NUMERICAL EXAMPLE
Let the parameters of the tank system be

0A = 0.2826 m?

= 8.688x107° m*®/s

@ =1000 K /W (27)

b, =288.15K =15 °C

B, =289.15K =16 °C
and

0q,(0)=1.3x10"° m*/s

%(0) 28

0,(0)=289.15K =16 °C
The desired outputs are

0gq, =1.0x10° m*/

qo X m S (29)

H5, =202.15K =19 °C

The simulation results are shown in Figs. 2 and 3.
In Fig. 2, the nomina plant is controlled by the control

law (24). The parameters of the controller are

[k, =k, =4.73x107°

30
0k =k, =7.5x10° (30)

It can be seen that the designed control system is stable
and the outputs reach the desired values after 1000
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FIGURE 2: Simulation results for the nominal plant.

In Fig. 3, the plant is assumed to contain uncertainties,
and 4, and A, are

[, = 5.0 x10™° sin(t)

E,az =1.0x107*sin(t) (3D

The parameters of the controller (25) are chosen to be
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FIGURE 3: Simulation results for a plant
with uncertainties.

Ky =Kkpo =1.0 (32

The simulation results show that the designed control

system is globally uniformly bounded and the outputs
converge to the desired values after 1000 seconds.

5. CONCLUSIONS

In this paper, a mathematical model of a tank system is
first derived, and abackstepping control law is developed
for the nominal plant. Then, based on the control law, a
robust backstepping control law is developed for a plant
with uncertainties. The validity of these control lawsis

demonstrated by simulations.
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