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Abstract
This paper presents a design method for a digital tracking control system
for a continuous plant with structured uncertainties, which is aimed at the
positioning control of an arm robot. To guarantee the robust stability of
the closed-loop system and provide the desired closed-loop performance,
the design problem is first formulated as a sampled-data �� control
problem, and is then transformed into a discrete-time �� control prob-
lem. Finally, linear matrix inequalities are used to obtain a static state
feedback controller and a reduced-order output feedback controller. The
validity of the method was demonstrated through simulations and exper-
iments.

1 Introduction

Many mechatronic systems are modeled as a linear continuous time-invariant system
(the nominal plant) with some continuous-time uncertainties. Since microcomputer
devices are widely used as controllers nowadays, the controller is in a discrete-time
form. So, the control system employs two types of signals, namely analog and digital.
And the sampled-data system is periodic even if both the plant and the controller are
time-invariant. These features make the synthesis of the sampled-data system a difficult
task. The usual approach to designing a robust digital control system is first to estimate
the equivalent discrete uncertainties, and then to design a robust stabilizing controller
for the related discrete uncertain plant. In this regard, over the past few years, sampled-
data �� control, which handles the continuous uncertainties of a plant directly, has
provoked a great deal of interest e.g. (?), (?). Bamieh and Pearson (1992) and Kabamba
and Hara (1993).
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An arm robot (?), (?) (Ohyama and Ikebe, 1994; Ohyama et al., 1999) is a typical
mechatronic system. Since it is simple, its mathematical model is easy to identify, and
the control result (position) can be understood visually, it is widely used in control
engineering courses.

This paper considers the problem of designing a robust tracking controller for an
arm robot with continuous structured uncertainties. The design problem is first formu-
lated as a sampled-data �� control problem, and is then transformed into a discrete-
time �� control problem. To reduce the order of an �� controller, the results in (?)
Xin et al. (1996), in which a reduced-order controller was designed based on linear
matrix inequalities (LMI) e.g. (?), (?) Gahinet and Apkarian (1994) and Iwasaki and
Skelton (1994), are used to obtain reduced-order output feedback�� controllers. The
validity of the method was demonstrated through simulations and experiments.

Throughout this paper,� �
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������������ for a continuous-time system, or the pulse transfer function���� �
������������ for a discrete-time system. ��������� �� ���
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for

���� � ���, where 		��� means the maximum singular value. A continuous-time
signal ���� in �� means

��
� ���������
� � �. Parentheses �	� around an indepen-

dent variable indicate an analog function, while square brackets 
	� indicate a discrete
sequence. � indicates a continuous-time or discrete-time system, while 
 indicates
a hybrid system that contains both continuous and discrete-time time-invariant sub-
systems. � is the empty set. �� denotes a matrix satisfying ����� � ���� and
����� � � with ���� and ���� denoting the null space and the range space of
matrix �, respectively.

2 System Description and Problem Formulation

The plant to be controlled in this study is the arm robot shown in Fig. 1. The arm is
connected to a motor through a gear box. The position of the arm is detected by an
encoder mounted at the axis of the motor. A block diagram of the plant is drawn in Fig.
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Figure 1: Arm robot.
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Figure 2: Block diagram of the plant.

2. Its mathematical model is described by��
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� � ��� , �� ��� and �	 ��� �
�
�� are the position of the arm, the state of the plant, the voltage command and the

observed output, respectively. In particular, �	 � ��� means the state feedback, and
�	 � �� means the output feedback. Without loss of generality, �� �



��� �

�
,

��� �� � (��� � �) is assumed. � � ��� , and � � ���� . � , � and �� are the
inertia of the system, the friction coefficient, and the torque coefficient, respectively.
� � 
�� �
 � and � � 
�� �
 � reflect the variations in the inertial load etc.
���� is an unknown bounded matrix (�� ������� 
 �) that represents the time-varying
parameter uncertainties.

For this plant, the robust tracking control system is constructed as shown in Fig. 3.

–

r[i ]
ZOH P(s )

uP [i] uP (t)

y(t)

y[i]
KMR

xR[i]e[i] τ

τH

S

τS y (t)
Fy

F [i]

Figure 3: Configuration of robust tracking control system.
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with all the roots of ����� � � being outside of the open unit circle, where �������
is the generator of the reference input and 	���� is the initial function. Then, the state
space representation of the internal model of the reference input, ����, is�								�
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This paper considers the design of a reduced-order discrete-time controller ����

(�� 
!� � �

�
�	 
!�
��
!�

�
) with an order less than "� (the order of the plant), that robustly

stabilizes the control system and tracks a given reference input without steady-state
error.

3 Design of Discrete-time Controller

Redrawing Fig. 3 with �
!� � � gives Fig. 4, in which the two new signals #��� and
$��� are defined to be the input and output of the uncertainty ����, respectively; and
the other new signals, #����, #� ��� and #�
!�, are the control input, and the states of the

plant and internal model weighted by positive semi-definite matrices % ���
� , %���

� and

%
���
� , respectively.

Applying the small gain theorem of a sampled-data system (?) to the control system
yields the following condition for robust stability.

�
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����	��

�#�����
�$�����

� �� (4)

To guarantee robust stability and obtain the desired closed-loop performance, we
extend the controlled output to include #����, #� ��� and #�
!�, which are the control
input, and the states of the plant and internal model weighted by positive semi-definite

matrices%���
� ,%���

� and%���
� , respectively. Let #� ��
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then the design problem for the robust controller can be formulated as:
Find a reduced-order controller ���� that internally stabilizes the generalized

plant �
 described by �
� #�
�	 
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Figure 4: Design of robust controller.
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Note that the generalized plant �
 contains both continuous and discrete parts. We
first convert the design problem to an equivalent discrete-time�� control problem by
the following steps:

Step 1 Partition the generalized plant �
 in Fig. 4 into two sub-systems: a continuous
subsystem, &����, and a discrete subsystem, &��'�, as shown in Fig. 5.

Step 2 Lift the continuous sub-system
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Figure 5: Partitioning of system.

and obtain the equivalent finite-dimensional discrete-time time-invariant system
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Step 3 Combine Eq. (7) with the discrete sub-system
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using an LFT to obtain the equivalent generalized plant & ��'� � �&��'��&��'�:
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Now, the design problem can be stated as: Find a reduced-order controller ����
that internally stabilizes the equivalent discrete-time generalized plant &���� and sat-
isfies

��������� � ��

where ������ � &���� ����� is the LFT of &���� and����.
It is known from (?) that the �� control problem for the discrete-time system is

solvable if and only if �� �� � where
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Suppose �� �� �. Then, there exists an �� controller of order "� satisfying

"� 
 ���� �) �(���� (15)

If the above result were directly used to find an �� controller, the order of the
feedback controller would generally be "� � * � "� . Since �� described by Eq.
(3) is known, in the rest of this section, the design of reduced-order controllers for
two special cases – state feedback and output feedback – is considered. Applying the
results of Xin et al. (1996) gives the following results.

THEOREM 1 Suppose the discrete-time �� control problem for the generalized
plant (9) with �	 � �� is solvable. Let the LMI solution be �(�) � � ��, with ��

being defined in Eq. 10. Decompose) ��

�
)�� )��
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and also decompose + �� ) �(�� �
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Then,
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holds, which imply that a feedback controller,�����, with an order less than or equal
to "� � � can be constructed by applying the standard LMI algorithm to �(� 	) �.

Proof In accordance with the decomposition of ��, we decompose &��'� in (9)
into
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Since ��� defined in Eq. (16) is invertible,�
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Therefore, based on the decomposition of ) , writing out � � in Eq. (12) gives us
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with its detail being omitted for brevity. Thus, *�) � � � holds. From (17), we have
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Thus, �(� 	) � � ��. Eq. (22) gives Eq. (19).
Similar to Theorem 1, we can obtain

COROLLARY 1 The discrete-time�� control problem for the generalized plant (9)
with �	 � ��� is solvable if and only if �� �� �, where �� is defined in Lemma ??,
with �� being simplified to

�� �� �) � ) � ) � � �� ��� ) �� ��
�
����� � � � ��� (23)

If it is solvable with the LMI solution �(�� )�� � ��, then �(�� (
��
� � � �� holds,

from which it follows that there exists a static state feedback controller.

Based on Theorem 1 and Corollary 1, the reduced-order output feedback controller
and static state feedback controller can easily be obtained by using the Sampled-data
Control Toolbox (?) (Fujioka et al., 1999) and LMI Toolbox (?) (Gahinet et al., 1995)
of MATLAB.

Summarizing the above results gives the design procedure for the sampled-data
robust tracking control. It is divided into steps as follows.



Step 1: Calculate the plant, Eq. (1), and the reference input, Eq. (2).

Step 2: Choose the semi-definite weighting matrices %���
� � %

���
� and %���

� , and con-
struct the generalized plant, �
 (Eq. (6)).

Step 3: Use Steps 1 - 3 in Section 3 to convert the sampled-date �� control problem
to an equivalent discrete-time �� control problem.

Step 4: Use the standard LMI algorithm (Equations (10), (11) and (12)) to calculate a
feedback controller,����.

Step 5: Use Corollary 1/Theorem 1 to obtain a reduced-order state/output feedback
controller,����.

4 Simulation and experimental results

The experimental system is shown in Fig. 6. The arm was driven by a DC motor (rated
voltage: ��; rated current: �����; rated speed: ��� �,
��). An A4-size notebook
computer (700-MHz Celeron) was used for control. A motor driver, a counter and
a D/A converter were built into the interface box. A parallel connection was used
between the interface box and the conputer. The rotational speed was reduced by a
gear box (64.8:1) and an optical encoder (16 cycles per turn) was mounted on the
shaft of the motor to measure the angle of the arm. So, the resolution for the arm
is ���� � ���� �,
�.�/�
. Pulses from the encoder were sent to the counter in the
interface box. The control input was fed to the motor through the interface box. The
parameters of the plant without an additional inertial load are

�
 � ����� �
 �   ��� (24)

We built some brass rods to simulate a change in the inertial load. When the heaviest
one (diameter: ��!0; length: ��!0) is mounted on the shaft of the motor, the
parameters of the plant are

�� �  ��"� �� � ����� (25)

Figure 6: Photograph of the experimental system.



So, for the experimental system, the parameters � and � take the following values

� � 
 ��"� ������ � � 
�����   ���� (26)

The nominal plant is
	� � ����� 	� � ����� (27)

We designed tracking controllers that robustly stabilize the control system for which
the output tracks the reference input

���� � ���� (28)

without steady-state error at the sampling points. The sampling period was chosen to
be

1 � ���� ��

So, the internal model of the reference input is given by

����� � � � �� (29)

A state feedback controller was designed under the conditions
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and
%
���
� � ���� (31)

for the state feedback case �	 � ��; and

%
���
� � ��"� (32)

for the output feedback case �	 � �� . Corollary 1 yields a static state feedback
controller

� � 
 ����� �� ��� ������ � � (33)

And an output feedback controller is designed using Theorem 1. It is of the following
form

� �

�
������� ���� ������ �� ��� ����

������� ��� ������� ��� �����

�
(34)

It has an order of one ("� � � � �).
The simulation results are shown in Figs. 7 - 8. It can be seen that the system

is stable when the inertial load changes from zero to the heaviest one, and the output
tracks the reference input without steady-state error.

We also carried out experiments using the designed controllers. For example, Figs.
9 - 10 shows the experimental results for the heaviest inertial load. As was seen in the
simulation results, the robust stability resulting from the sampled-data�� control was
demonstrated. On the other hand, The voltage applied to the motor reached saturation
at ���, and the influence of the static friction and dead zone was marked. For these
reasons, the response was not as good as the simulations.
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5 Conclusions

This paper describes a design method for digital tracking control systems for a contin-
uous plant with structured uncertainties. The design problem is first formulated as a
sampled-data �� control problem, and then transformed into an equivalent discrete-
time �� control problem. A reduced-order output feedback controller with an order
no greater than that of the plant minus one have been designed by using an LMI-based
�� control approach. The design method was applied to an arm robot, and the validity
of the method has been demonstrated through simulations and experiments.
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