
ABSTRACT

In positioning control systems, the reference input is frequently
given as a periodic function of a standard position. Within this
framework, this paper introduces a new concept called the "position
domain", and develops a systematic approach to the design of
positioning control systems in which the speed at which the input
is scanned fluctuates periodically with respect to position. A linear
periodic model in the "position domain" is obtained by a
transformation from the time domain. A two–degree–of–freedom
(TDF) control system configuration has been employed. A repetitive
controller has been designed in the "position domain" in which the
output traces a position–dependent periodic reference input without
steady-state error, and eliminates the effects of such fluctuations.
A repetitive deadbeat controller has been designed to obtain the

desired transient response.

Keywords: Position-Dependent Signals, Positioning Control,
Repetitive Control, Deadbeat Control, H∞ Control.

ⅠⅠⅠⅠ  INTRODUCTION

In many positioning control problems, the reference input is
frequently given as a periodic function of a standard position. For
instance, in a noncircular cutting process, the reference input of
the cutting tool is a periodic function of the rotational angle of the
spindle. To obtain high positioning precision, it has been shown
that using a repetitive control system [1] , [2],[3],[4]  designed in
the "time domain" is very effective with the ideal case being the
scanning of the input waveform at a certain constant speed. However,
position–dependent disturbances caused by the system structure
and machining result in fluctuations in the scanning speed. In such
a case, fluctuations of the scanning speed adversely affect the
reference input in the time domain. As an example, let the reference
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input be r t t t( ) sin( ( )) sin( ( ))= +θ θ2 . This input waveform is
plotted in the time domain in Fig.1 for a constant scanning speed
ω( )t = 10 ( / )rad s  and for a fluctuating speed given by
ω θ( ) sin( ( ))t t= +10 5 ( / )rad s . As can be seen,  the scanning
speed fluctuations induce variations in the period and waveform of
the reference input in the time domain. For this reason, a repetitive
controller designed in the time domain might not maintain a high
positioning precision. So we need to develop a new design method
to handle such cases.

In this paper, we consider the high-precision positioning
control problem when the scanning speed fluctuates periodically
with respect to a standard position. First, we introduce the concept
of the "position domain",  and present a transformation to obtain a
model in the "position domain". Secondly, we propose a design
method in the "position domain". This method yields  the desired
transient and steady-state response, and provides robustness with
regard to scanning speed fluctuations. Finally,  some experimental
results are shown to demonstrate the effectiveness of the proposed
approach.
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Fig.1  Variation of reference input in 'time domain'
caused by scanning speed fluctuations.
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Notation and Definitions

λ :  delay operator (λ=z-1).

 RH∞ : set of all real-rational functions in λ which have no
poles in the closed unit disc.

R[ ]λ : ring of polynomials in λ  ( ⊂ ∞RH ).

      G  G e Gj( ) sup ( ) ( ( ) )
0 2

λ λ
φ π

φ
∞

≤ ≤
∞= ∈:    ; RH

Ω[ ( )]a λ : set of all zeros of the polynomial a( )λ .

ⅡⅡⅡⅡ  SYSTEM MODELING IN THE "POSITION
DOMAIN"

In the positioning control problem considered here, the
reference input is a periodic function of a standard position. Since
the reference input is based on position, it is clearly more convenient
to formulate this problem in terms of position than time. The
"position domain" is defined as follows [5]:

Definition: The "position domain" is a set in which every
element is a function of the standard position.

To guarantee that the "position domain" is completely
equivalent to the time domain, an extra condition on the
transformation must be satisfied:

Transformation Condition: There exists a transformation from
the time domain to the "position domain" if and only if the direction
of the scanning speed is unchanged. Without loss of generality, if

we use θ  to denote the standard position, then the condition can
be expressed as

ω θ
( ) ;t

d

dt
t= > ∀ >0 0 . (2.1)

Throughout this paper, Condition (2.1) will be assumed to be
satisfied.

Consider a plant for which the state-space description in the
time domain is given by

d t

dt
t t

x
Ax Bu

( )
( ) ( )= + (2.2a)

y Cx( ) ( )t t= , (2.2b)
where u( )t is the control input, y( )t is the output, and x( )t  is the
state.

In view of (2.1), the relationship between the time domain
and the "position domain" can be summarized as

t t: ( )= θ (2.3a)

ω ω ω θ ω θ= = =( ) ( ( )) : ˜ ( )t t (2.3b)
u u t u t u= = =( ) ( ( )) : ˜( )θ θ (2.3c)
y y t y t y= = =( ) ( ( )) : ˜( )θ θ (2.3d)

x x t x t x= = =( ) ( ( )) : ˜( )θ θ (2.3e)

dx

dt

dx

d

d

dt

dx

d
= =

˜( ) ˜ ( )
˜( )θ

θ
θ ω θ θ

θ
. (2.3f)

Substituting (2.3) into (2.2) yields the plant model in the
"position domain":

dx

d
Ax Bu

˜( ) ˜ ˜( ) ˜ ˜( )
θ
θ

θ θ= + (2.4a)

˜( ) ˜ ˜( )y Cxθ θ= , (2.4b)
where

˜
˜ ( )

; ˜
˜ ( )

; ˜A
A

B
B

C C= = =
ω θ ω θ

. (2.5)

From (2.5) it is clear that, if the scanning speed  fluctuates
periodically with respect to position, then so do the system matrices

Ã  and B̃. Therefore the plant in the "position domain" turns out
to be a linear periodic plant with the same period.

On the other hand, in the "position domain", the nominal
model corresponding to the ideal case of a constant scanning speed,
ω0 , can be written as

dx

d
A x B u

˜( ) ˜ ˜( ) ˜ ˜( )
θ
θ

θ θ= +0 0 (2.6a)

˜( ) ˜ ˜( )y C xθ θ= 0 , (2.6b)
where

˜ ; ˜ ; ˜A
A

B
B

C C0
0

0
0

0= = =
ω ω

. (2.7)

If we put a sampler and a hold on the output and the input ,

respectively, of the model (2.6), and set the sampling period to ∆θ,
then we obtain the pulse–transfer function of the plant and denote
it as P .

In the next section, we develop a control system design method.
We initially assume that the fluctuations in the scanning speed are
very small, so that they will not disrupt the internal stability of the
designed control system, because we carry out our design using
the nominal model (2.6) without considering the system's robust
stability. However, since a real system (2.4) is linear periodic, in
order to obtain a high positioning precision, we then consider how
to eliminate the effects of such variations in the plant.

ⅢⅢⅢⅢ  CONTROL SYSTEM DESIGN

As is well known, a L-periodic signal can be written as

˜
... –

–

r =
– –L

L
L

L( )
( )

1 1

2

λ λ
λ

λ λ λ
λ

r r r r r= + + + +0 1 2 1
1

. (3.1)

Now, let's consider the positioning control problem for such
a reference input. Here, we make two assumptions. The first is for
solvability and the second is for simplicity.

Assumption 1: The plant has no zeros in common with (1-λL).
Assumption 2: The reference input and the fluctuations of the

scanning speed have the same period.
A positioning control system must satisfy the following

requirements:
1) Tracking performance: It must provide the desired transient

and steady-state input–output performance.
2) Robustness: The effects of scanning speed fluctuations

must be eliminated.
The two-degree-of-freedom (TDF) control system

configuration [6] [7] shown in Fig. 2 is used here. It is well known
that a TDF configuration enables 1) and 2)  to be satisfied
independently.

Let

+
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Fig. 2  Configuration of a positioning control system
designed in the "position domain".
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be a coprime factorization of the plant P .

From Assumption 1, it is clear that N  and ( )1 − λL D  are
coprime and there exist X Y, ′ ∈ R[ ]λ  such that

XN Y DL+ − ′ =( )1 1λ . (3.3)
Define

Y YL: ( )= − ′1 λ . (3.4)
Then all TDF repetitive controllers that stabilize the system can be
characterized by

C C C Y K N K X K D= = +[ ] ( – ) [ ]–
1 2 2

1
1 2

K K1 2, ∈ ∞RH  .             (3.5)
From Theorem 1 in [8], it is known that, if we insert a repetitive
controller with a period of L in the controller C , i.e.

( ) ( – )–1 1
2− ∈ ∞λL Y K N RH , (3.6)

then in the steady-state, the effects of periodic variations in the
plant will be eliminated and the output will track the reference
input without steady-state error. To satisfy condition (3.6), we
only need to restrict the class K2  to be

K K KL
2 2 21= − ′ ′ ∈ ∞( ) ;λ RH . (3.7)

So, all the TDF repetitive controllers can be parameterized as
C C C

Y K N K X K DL L

=

= − ′ ′ + − ′

[ ]

( ) ( – ) [ ( ) ]– –

1 2

1
2

1
1 21 1λ λ

K K1 2, ′ ∈ ∞RH  ,             (3.8)

where K1 and ′K2  are free parameters to be designed.

Design of Parameter K1. The input-output transfer function in
Fig. 2 is given by

G NKyr˜ ˜ = 1 . (3.9)

It means that we can obtain the desired input-output performance
independently of the desired closed loop transfer performance by
an appropriate choice of K1 ∈ ∞RH .

For the desired input–output response, a deadbeat response is
one possible choice. To obtain a low–ripple deadbeat response, the
following conditions must be satisfied [9], [10]:

(i) Deadbeat condition: The tracking error between the
reference input and the output must be a finite polynomial, i.e.

˜ : ˜ ˜ ˜e r y ei
i

i

= − =
=
∑ λ
µ

0

, where µ is a finite positive integer.

(ii) Low–ripple condition: The transfer function from the
reference input to the control input must be a finite polynomial,
i.e. Gur˜ ˜ ∈ R[ ]λ , where G Kur˜ ˜ = D 1.

(i) and (ii) are satisfied if and only if we restrict K1 to

K1 [ ]∈ R λ . (3.10)
Due to (3.8), the tracking error becomes

˜ ˜ ˜ ( – )˜ ( – )e r y
r= − = 1 1NK r NK

– L1 1=
1 λ

. (3.11)

For this to be a finite polynomial, there must exist a finite polynomial
f ∈ R[ ]λ  such that

1 11– ( – )NK fL= λ . (3.12)
From (3.12), we have

K
f

N

f

b

L L

m1

1 1 1 1= =– ( – ) – ( – )λ λ
λ

. (3.13)

From (3.13), we easily obtain the necessary and sufficient condition
for K1 [ ]∈ R λ :

Ω Ω[ – ( – ) ]λ λm Lb f] [⊂ 1 1 . (3.14)

Based on (3.14), we can determine the lowest polynomial

f *

f f f fm l
m l* * * *...= + + + + −

+ −
0 1 1

1λ λ (3.15)

exactly. Here, for simplicity, we assume that b( )λ = 0  has only
simple roots and let ξ ξ ξ1 2, , ..., l  denote these roots. The result is
summarized as follows:

Theorem 1: The parameter K1 which yields low–ripple,
repetitive deadbeat control with a minimum settling step is given
by

K
f

N

L

1

1 1* = – ( – ) *λ
, (3.16)

where f * is the polynomial given in (3.15) and its coefficients are
determined by the following algorithm:

1) f f fm0 1 1
* *

–
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If L m> −1:

fi
* ;

.
=

=
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If L m≤ – 1: let η be an positive integer which satisfys
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2) f f fm m m l
* *

–
*, , ...,+ +1 1  are determined by the l–simple zeros
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where g fL i
i

m
i( ) :

–
– *

–

λ
λ

λ=
=
∑1

1 0

1

. (3.20)

However, as is well known, minimum–settling–step deadbeat
control may have a violent transient response. To avoid this we
can use the rest of the freedom of parameter K1 to optimize the
transient response.

From (3.10), (3.13) and (3.16), it is clear that all K1 which
yield low–ripple repetitive deadbeat control can be parametrized
as

K K K KL
1 1 1 11= + ; [ ]* ( – )λ λ  ∈ R , (3.21)

where K1 can be any polynomial. So we can choose an appropriate

polynomial K1 ≠ 0 to optimize the transient response.
Let

K k k k kq
q

i
i

q

1 1= =0
=0

+ + + ∑λ λ λL
i

. (3.22)
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where
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If we assume

∆ ˜ ˜u u: (1 )= – Lλ , (3.25)
then

∆

∆ ∆
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*
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u K u

ur

i
i

( ) (1 )

= + (1 )

: – =

1

1
*

1

=0

2 + + –1

λ λ

λ

γ λ

= =

∑

– DK r

DK r – DrK

=

L

L

i

L n q

1

(3.26)

where

∆ ∆˜ ˜* *u ui
i: =1

*

=0

2 + –2

= DK r
i

L n

∑ λ (3.27a)

γ λ γ λ: (1 ) =
=0

2 + –1

= – DrL

i

L n

i
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Generalizing the transient response performance index given
in [11] and [12], we define it to be

J e ui i1

2 2 2= +∑ { ˜ ˜ }ρ
µ

∆
i

L q

=0

+ + –1

, (3.28)

where µ=max{m+l, L+n} and ρ  is a weighting coefficient;
 and let

K R1 : [    ]T= k k kq
q

0 1
1L ∈ + (3.29a)


˜ ˜ ˜ ˜e R : [    ]+ + –1
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L qe e e m l

m l
0 1 L +
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L qe e e m l
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0 1 L L+
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L n q∆ ∆ ∆u u u0 1 L ∈ (3.29d)
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L n q∆ ∆ ∆u u u0 1 L L ∈ .
(3.29e)

Then the performance index can be expressed as
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The solution of K1 is given in the following theorem.

Theorem 2: The coefficients of K1 in (3.29a) which minmize
the transient response performance index (3.28) are given by

K1 = F F1
1

2
– , (3.32)

where

F1 = [ ] 
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and the minimum of J1 is given by

min –J J F F FM1 1 2 1
1

2= − Τ , (3.34)
where
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L m l
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L n

∆
(3.35)

Design of Parameter K2. As we saw in Section Ⅱ,  in the "position
domain", when the scanning speed fluctuates periodically, so does

the plant. If we denote such a plant as P̂ , then the nominal and
actual input–output transfer functions of the system are given by

G
PC

PCyr˜ ˜ =
+

1

21
(3.36a)

ˆ
ˆ

ˆ˜ ˜G
PC

PCyr =
+

1

21
. (3.36b)

The change in the input–output transfer functions of the system
due to fluctuations of the scanning speed can be characterized as

ˆ –
ˆ

ˆ –
ˆ

ˆ –
ˆ

˜ ˜ ˜ ˜

˜ ˜

G G

G PC

P P

P

P P

P
yr yr

yr

=
+

1

1 2

= S , (3.37)

where

S
PC

:=
+

1

1 2

(3.38)

is the sensitivity function of the system. From (3.37), it is clear
that the system will be robust if the weighted sensitivity function
is made as small as possible. For this reason, we define the robust
index as

J WS
W

PC2
21

= =
+∞

∞

 . (3.39)

Considering that in our problem the scanning speed fluctuates
periodically, we should choose the weighting function to be

W
W

L=
1 – λ

, (3.40)

and thus (3.39) becomes

J
W

PC
WD Y K NL2

2
21

1

1
=

+
= ′ ′

∞
∞–

( – )
λ

. (3.41)

Then the parameter ′ ∈ ∞K2 RH  can be determined by choosing it
to yield inf

′ ∈ ∞K
J

2
2

RH
. The solution is given in [13], [14], [15].

ⅣⅣⅣⅣ   EXPERIMENT

The experimental system is shown in Fig. 3. It consists of a
pen, a disk, a one–axle table, two DC motors, a computer with a
68000–series CPU and the relevant interface hardware. One of the
DC motors is used to turn the disk for the purpose of generating a
standard position. The other is used to drive the table with the pen
connected to it. By controlling the position of the table, we want to



draw a flower pattern on the disk.
The plant model in the time domain is

P s
s s

( )
.

( . )
=

+
0 6547

0 09719 1
. (4.1)

Assuming that the standard scanning speed is
ω0 5 236= . ( / )rad s , (4.2)

the transformation introduced in Ⅱ yield a plant model in the
"position domain". Then, we sample it at intervals of

∆θ = 0 1257. ( )rad (4.3)
to obtain the pulse transfer function of the nominal plant:

P = +
−

λ β λ β
λ λ α

( )

( )( – )
1 0

1
(4.4a)

α β β= = =1 280 0 002291 0 0021100 1. ; – . ; – .  . (4.4b)
Let the input waveform be

˜( ) sin ( )r mmθ θ= 20 2 . (4.5)
Then we can design a TDF repetitive controller for (4.4) using the

approach developed in Ⅲ.
After carrying out the coprime factorization (3.3), we use

Theorem 1 to calculate the parameter K1
* . Then letting

q = 100 (4.6)
ρ = 1, (4.7)

we use Theorem 2 to calculate the parameter K1. Combining these
two parameters according to (3.21), we get the resultant K1. For

the calculation of ′K2 , we take

W = 1

1 – λ
(4.8)

and solve the problem inf
′ ∈ ∞K

J
2

2
RH

 in (3.41). Finally, substituting

K1 and ′K2  into (3.8), we obtain the TDF repetitive controller.
The experimental results are shown in Figs. 4–5. In Fig. 4,

the scanning speed is constant. And in Fig. 5, it fluctuates periodically

with a period of 2π (rad). The experimental results show that the
present method provides high positioning precision even when the
scannig speed fluctuates periodically.

ⅤⅤⅤⅤ   CONCLUSIONS

This note describes a design method for solving the positioning
control problem in the case where a reference input is scanned at a
position–dependent periodic speed. A new concept called the

y

ω

Control
Input Standard PositionPosition
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Positioning

Motor for Standard
Position Generating

Encoder
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Fig. 3  Experemental set–up.
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"position domain" is introduced, and a transformation from the
time domain to the "position domain" is  presented. For the purpose
of optimizing the input–output response and ensuring robustness,
a TDF repetitive control configuration is  employed and a design
method for this system is presented. The validity of the present
method has been demonstrated by experiments.
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Fig. 4  Experimental results for a constant scanning speed.
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Fig. 5  Experimental results for a periodically fluctuating scanning
speed.


