
1. INTRODUCTION

Repetitive control is a very useful strategy for tracking periodic
signals and/or eliminating periodic disturbances. However, since
a repetitive controller usually has a large time delay, the design of
a low-order robust repetitive controller is difficult, and system
design has mainly focused on the nominal plant (Hara et al, 1988;
Tomizuka  et al., 1989). However, there has been significant
progress in robust control theory recently, and some interesting
results on robust repetitive control have been obtained by Hoshi
et al. (1993), Ishibashi  et al. (1994), Hara  et al. (1994b) and
Shaw and Srinvasan (1993).

Motivated by the recent development of the sampled-data H∞

control theorem by such researchers as Bamieh and Pearson (1992),
Fujioka and Hara (1993), Hara et al. (1994a), Hayakawa et al.
(1992), and Kabamba and Hara (1993), and of the static output
feedback H∞ control theorem (de Souza and Xie, 1992), we present
a design method for digital repetitive control systems which robustly
stabilizes an uncertain plant. The present design method features
the lowest order of the repetitive feedback controller.

Throughout this paper, λ   denotes a delay operator, and R[ ]λ
denotes a ring of polynomials in λ  .

2. PROBLEM FORMULATION

Let us consider the partial-static-state-feedback repetitive control
system shown in Fig. 1, where the repetitive controller CR,
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can have a controllable canonical structure
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Fig. 1.  Configuration of TDF repetitive control system.
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In this paper, we use the controllable canonical form for analysis;
and we use the observable canonical form for implementation
because it automatically incorporates a one-step computational
delay of the repetitive controller. The repetitive control system in
Fig. 1 contains a κ-step computational delay.

Consider the structurally uncertain plant P(s) (Asai and Hara,
1992)
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where x t n( ) ∈ R  is the state, u t( ) ∈ R  is the control input,
y t( ) ∈ R is the output and v t p( ) ∈ R  is the available partial state.

The nominal plant P0(s) corresponding to Γ ( )t = 0  is
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To make this problem solvable, we need two assumptions.

Assumption 1: E A E B− −( )1 1  is stabilizable.
Assumption 2: The sampling period τ  is chosen such that

( )( )e e E BdtE A E A t− − − −∫
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Here, we represent the feedback controller in Fig. 1 by
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Then the closed-loop system with zero input is represented by
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The robust stability of this repetitive control system can be defined
as follows (Hara  et al., 1994b):

Definition  The repetitive control system in Fig. 1 is said to be
robustly stable if the closed loop system Σ   is asymptotically
stable.

Now the design problem for repetitive control systems can be
stated as:

i)  Design a static feedback gain F FP[ ]  which robustly
stabilizes the system in Fig. 1.

ii)  Design a feedforward controller K1 which yields the desired
transient input-output response.

3. DESIGN OF FEEDBACK CONTROLLER

Redrawing Fig. 1 as Fig. 2 with the input r i[ ] = 0, we obtain the
condition for robust stability by applying the small gain theorem
(Sivashankar and Khargonekar, 1993):

Lemma 3.1  The repetitive control system in Fig. 1 is robustly
stable if
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To guarantee the robust stability of the  system and obtain the
desired closed-loop performance, we extend the controlled output
and include the weighted control input and the states of the plant,
controller and computational delay in it. Now the design problem
for the feedback controller can be formulated as (see Fig. 3):

Find a static feedback gain F FP[ ]  which internally stabilizes 

Ps and satisfys

  Gzw ∞
<1, (12)

where   Ps  is given by
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Applying Theorem 2 of Fujioka and Hara (1993) to our case, we
have the following theorem.

Theorem 3.1  The following are equivalent:
i)  The system of Fig. 3 is internally stable and   Gzw ∞

<1;

ii) The system of Fig. 4 is internally stable and Ge( )λ
∞
<1.

The discrete equivalent plant Pe( )λ  in Fig. 4 is obtained by the
following procedure. First, decompose the plant   Ps  into two sub-
systems,   PC  and PD( )λ , as shown in Fig. 5. Secondly, lift the
sub-system   PC  and reduce it to a finite-dimensional discrete system.
Finally,  combining this system with PD( )λ  yields the discrete
equivalent plant Pe( )λ .(A special case of this problem (ΨE = 0)
can be calculated using the MATLAB µ-toolbox (Balas, et al,
1993).) Let the equivalent general discrete-time plant be
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Then the design problem is equivalent to the following static-
output-feedback discrete-time H∞ control problem:
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Fig. 3.  Formulation of feedback control problem.

Find a static output feedback gain F FP[ ]  which internally
stabilizes Pe( )λ  and satisfies (see Fig. 4)

Ge( )λ
∞
<1. (15)

The resulting F FP[ ]  can be calculated by the following algorithm
(de Souza and Xie, 1992):
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Step 1: Set the iteration index i=1 and Q1=0.
Step 2: Solve the following discrete algebraic Riccati equation:
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for Pi . If Pi ≥ 0 , then go to step 3; otherwise, no feasible solution
was found.
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Fig. 4.  Equivalent discrete-time system.



Step 3: If P P Pi i i− <−1 / ε , where ε is a small positive real number,
proceed to the next step; otherwise, let i=i+1 and set
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If Qi < 0, then set Q Qi i= −1. Go back to step 2.

Step 4: If V I B PB D Di e
T
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Step 5: Calculate the feedback gain by
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4. DESIGN OF FEEDFORWARD CONTROLLER

Assume an L-periodic signal to be
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Let GP( )λ  denote the pulse transfer function of the nominal plant
with a κ-step computational delay, and G0 ( )λ  denote the pulse
transfer function of GP( )λ  with partial state feedback FP . Also,
let their coprime factorizations be
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For simplicity, we assume that no cancellation between the zeros
and poles of the plant is brought about by the introduction of the
partial state feedback FP .

We can design a low-ripple deadbeat feedforward controller, K1,
in accordance with G0  and GP . The term “low–ripple deadbeat
response” means that the following conditions are satisfied:

(i) Deadbeat condition: The tracking error between the reference
input and the output is a finite polynomial, i.e.
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Fig. 5.  System decomposition.
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, where µ is a finite positive integer.

(ii) Low–ripple condition: The transfer function from the
reference input to the control input is a finite polynomial,
i.e. Gu rk

∈ R[ ]λ .
Some of the details are given in She (1993). Here the main results
are just summarized in the following three theorems.

Theorem 4.1  The parameter K1 which yields low–ripple, repetitive
deadbeat control with a minimum settling time is given by
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where f *  is the polynomial
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and its coefficients are determined by the following algorithm
(For simplicity, we assume that b( )λ = 0 has only simple roots
and let ξ ξ ξ1 2, ,..., l  denote these roots.):
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Theorem 4.2    All K1 that yield low–ripple repetitive deadbeat
control can be parameterized as

  K K K KL
1 1 1 11= + ; [ ]* ( – )λ λ  ∈ R , (29)

where K1 is any polynomial.

To optimize the transient response, we choose an appropriate non-
zero polynomial
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and ρ  is a weighting coefficient. The resulting K1 is given by the
following theorem.

Theorem 4.3  The coefficients of K1,
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The minimum of J is given by
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5. NUMERICAL EXAMPLE

Consider the second-order plant
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all the states are available, and there is no computational delay,
i.e.

κ = 0 . (45)

Now we design a TDF repetitive controller which robustly stabilizes
the control system and whose output tracks the periodic input
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without steady-state error at the sampling points. The design is
carried out under the following conditions:
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The simulation results are shown in Figs. 6-9. In Fig. 6, ζ  has the
nominal value 0.5. As expected, the output reaches the steady
state from the third cycle and tracks the reference input without
steady state error. The control input during the transient is also
moderately restricted. ζ =0 in Fig. 7 and ζ =1.0 in Fig. 8. It can be
seen that, though the parameter of the plant is different from its
nominal value, the system still remains stable and its output tracks
the reference input without steady state error. And the control
input is moderately restricted. For comparison, we plot the response
of the  minimal-settling-time controller K K1 1= * with ζ = 0 5.  in
Fig. 9. It is clear that there were extreme changes in the control
input during the transient.

6. CONCLUSIONS

This paper describes a design methodology for digital repetitive
control systems in the case where there are some structured
uncertainties in the plant. A TDF repetitive control system
configuration is employed and a method of designing this system
is presented. The advantage of the proposed method is that the



feedback controller has the lowest order. The validity of the present
method has been demonstrated by simulations.
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Fig. 6.  Optimal response for = 0.5.ζ

-100

0

100
u

14121086420 t(sec)

t(sec)

-100

0

100

u

14121086420

Fig. 8.  Optimal response for = 1.0.ζ
t(sec)

Fig. 9.  Minimal settling - time response for = 0.5.ζ

Fig. 7.  Optimal response for = 0.ζ


