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Abstract— This paper presents a novel control strategy based
on a non-smooth Lyapunov function to guarantee the stability
of the system in the whole motion space. Three control laws
that are derived based on three Lyapunov functions are applied
successively in three stages of motion control to achieve a suitable
posture and increase the energy so as to make the acrobot move
into the area around the unstable inverted equilibrium position,
and to stabilize it at that position. These three Lyapunov functions
are combined into one non-smooth function, which theoretically
guarantees the stability of the acrobot in the whole motion space.
Simulation results have demonstrated the validity of this strategy.

I. INTRODUCTION

An acrobot is a two-link manipulator operating in a vertical
plane with an actuator at the elbow but no actuator at the
shoulder [1]. A common control objective is to drive the
acrobot away from the stable downward equilibrium position
and balance it at the unstable inverted equilibrium position.
In order to simplify the design procedure, the motion space is
usually divided into two subspaces: the attractive area, which
is the area around the unstable inverted equilibrium position;
and the swing-up area, which is the rest. For example, Spong
[1] described a method based on partial feedback linearization
to swing an acrobot up, and used a linear quadratic regulator
(LQR) to balance it. However, the control laws for LQR
balancing are only applicable within a small region [1]. This
limitation makes it difficult to capture the acrobot and restrict
it to the attractive area. On the other hand, the control methods
in [2], [3] are complicated and/or have a relatively long
settling time. A fuzzy control strategy was presented in [4]
that combines model-free and model-based fuzzy controllers
to control the swing-up and balancing motions. This strategy
is very simple, and the control results are quite satisfactory.
However, it does not solve the combined problem of how
to ensure a suitable posture and energy. Thus, it does not
theoretically guarantee that the acrobot smoothly enters the
attractive area and stays there.

Åström and Furuta proposed a method to swing up a
pendulum based on energy control [5], and Fantoni et al.
derived an energy-based control strategy for a pendubot [6].
The energy-based method has also been used to an acrobot
and examined the combined problem of how to ensure a
suitable posture and energy for an acrobot [7], [8]. While
[6] analyzed the stability in the swing-up area, other studies
considered the stability in the attractive area. However, few
have considered the stability of the system in the whole motion
space. Since an acrobot is a very complex, nonlinear system,
it is not easy to design a control law that always provides
a suitable combination of posture and energy that makes the
acrobot move smoothly into the attractive area and stay there,
and also guarantees the stability of the system in the whole
motion space. This motivated us to find a more efficient control
method and examine the issue of stability in the whole motion
space.

This paper presents a control strategy that employs a
non-smooth Lyapunov function to handle both swing-up and
balancing control, and that guarantees the stability of the
system in the whole motion space. First, three control laws
are derived based on three Lyapunov functions. They are
applied successively in three stages of motion control. In
the first stage, the first law changes the posture and energy
of the acrobot so as to make the energy increase while the
second link stretches out in a natural way. This law makes
it possible for the acrobot to quickly approach the attractive
area. When its energy reaches a certain level, the acrobot
enters the second stage and the second control law takes over
to avoid the singularity produced by the first one. This law
forces both the angle and the angular velocity of the second
link toward zero. In addition, fuzzy rules are employed to
adjust the parameters of the control law so as to prevent an
abrupt change in energy, to increase the energy toward the
potential energy that the acrobot has at the unstable inverted
equilibrium position, and keep it near that value. The third
stage is reached when the acrobot enters the attractive area
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Fig. 1. Model of an acrobot.

and the third control law takes over. This law is based on a
linear approximate model for the unstable inverted equilibrium
position, and it balances the acrobot in the attractive area.
These three Lyapunov functions are combined into one non-
smooth function, which theoretically guarantees the stability
of the acrobot in the whole motion space. Simulation results
have demonstrated the validity of this strategy.

II. DESIGN OF CONTROLLERS

This section presents the mathematical model of an acrobot
and explains the design of the three control laws.

A. Dynamics of acrobot

The acrobot is shown in Fig. 1. If we let qi be the angle
of the i-th link (i = 1, 2), q := [q1 q2]T , q̇ := dq/dt, and
q̈ := d2q/dt2, then the dynamics of the acrobot are given by

M(q)q̈ + D(q, q̇) + G(q) = τ, (1)

where

M(q) =
[

m11(q) m12(q)
m21(q) m22(q)

]
, (2)

D(q, q̇) = [d1(q, q̇) d2(q, q̇)]
T

, (3)

G(q) = [g1(q) g2(q)]
T

. (4)

τ = [0 τ2]
T

. (5)

The components of M(q), D(q, q̇), and G(q) are

m11(q) = m1L
2
g1 + I1 + m2L

2
g2 + I2

+2m2L1Lg2 cos q2 + m2L
2
1,

m12(q) = m21(q) = m2L
2
g2 + I2 + m2L1Lg2 cos q2,

m22(q) = m2L
2
g2 + I2,

d1(q, q̇) = −m2L1Lg2

(
2q̇1q̇2 + q̇2

2

)
sin q2,

d2(q, q̇) = m2L1Lg2q̇
2
1 sin q2,

g1(q) = −(m1Lg1 + m2L1)g sin q1

−m2Lg2g sin(q1 + q2),
g2(q) = −m2Lg2g sin(q1 + q2),

where, for the i-th link (i = 1, 2), mi is the mass, Li is the
length, Lgi is the length from the mass center to the i-th joint,
and Ii is the moment of inertia around the center of gravity.

Defining x = [x1 x2 x3 x4]
T = [q1 q2 q̇1 q̇2]

T and rewrit-
ing the dynamics (1) in the state-space form yields

ẋ1 = x3, (6)

ẋ2 = x4, (7)

ẋ3 = fµ(x) + bµ(x)τ2, (8)

ẋ4 = fη(x) + bη(x)τ2, (9)

where fµ(x), bµ(x), fη(x), and bη(x) are nonlinear functions
given by[

fµ(x)
fη(x)

]
= M−1(q)

[−d1(q, q̇) − g1(q)
−d2(q, q̇) − g2(q)

]
, (10)

[
bµ(x)
bη(x)

]
= M−1(q)

[
0
1

]
. (11)

The system (6)-(9) can be written as

ẋ = f(x) + b(x)τ2, (12)

where

f(x) = [x3 x4 fµ(x) fη(x)]T ,

b(x) = [ 0 0 bµ(x) bη(x) ]T .

B. Division of motion space

The total mechanical energy, E(x), of the acrobot is the sum
of the kinetic energy, T (x), and the potential energy, V (x):

E(x) = T (x) + V (x). (13)

T (x) and V (x) are expressed in generalized coordinates as

T (x) =
1
2

[ x3 x4 ] M(x)
[

x3

x4

]
, (14)

V (x) =
2∑

i=1

Vi(x) =
2∑

i=1

mighi(x), (15)

where Vi(x) is the potential energy and hi(x) is the height of
the center of mass of the i-th link (i = 1, 2). hi(x) (i = 1, 2)
are given by

h1(x) = Lg1 cos x1,

h2(x) = L1 cos x1 + Lg2 cos(x1 + x2).

Let the whole motion space be Σ, and define the attractive
area Σa to be

Σa :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∣∣∣mod
(x1

2π

)∣∣∣ ≤ β1,∣∣∣∣mod
(

x1 + x2

2π

)∣∣∣∣ ≤ β2,

|E(x) − E0| ≤ ε,

(16)

where mod(·) means the residue modulus 2π. E0 is the
potential energy at the unstable inverted equilibrium position;
and β1, β2 and ε are positive real numbers. So, the swing-up
area is Σ − Σa.



C. First control law

The first Lyapunov function, J1(x), is chosen to be

J1(x) =
1
2

{
kp1x

2
2 + kd1x

2
4 + ke1 [E(x) − E0]

2
}

+ ∆1,

(17)
where kp1 > 0, kd1 > 0 and ke1 > 0 are constants; and ∆1 ≥
0 is a constant that plays a key role in guaranteeing that the
non-smooth Lyapunov function discussed in the next section
decreases monotonically. The choice of ∆1 is also explained
in that section.

As shown in [4], the derivative of the energy with respect
to time is

Ė(x) = x4τ2. (18)

Applying (9) yields the derivative of J1(x) with respect to
time

J̇1(x) = x4 {kp1x2 + kd1ẋ4 + ke1 [E(x) − E0] τ2}
= x4 {kp1x2 + kd1fη(x) + [kd1bη(x) + ke1 (E(x) − E0)] τ2} .

(19)
So, the first control law is chosen to be

C1 : τ2 = −kp1x2 + kd1fη(x) + λ1sat(x4/Φ1)
kd1bη(x) + ke1(E(x) − E0)

, (20)

where λ1 > 0 and Φ1 > 0 are constants.
This law ensures that

J̇1(x) = −λ1x4sat(x4/Φ1) ≤ 0. (21)

It will be shown in the next section that, when x is in the
swing-up area, (21) guarantees that the energy increases and,
at the same time, that the second link straightens out in a
natural way.

Note that, if (20) is applied while E(x) < E0, then a
singularity occurs when

E(x) = E0 − kd1

ke1
bη(x), (22)

In this paper, a second control law is employed to avoid this
situation, and the first switching condition is

T1 :
{

J2(x) < J1(x),
kd1bη(x) + ke1 [E(x) − E0] ≤ ζ,

(23)

where J2(x) is the second Lyapunov function, which is
explained in the next section, and ζ < 0 is a constant.

This condition divides the swing-up area into two subspaces:
Σs1 and Σs2. When (23) is satisfied, the control law switches
from (20), which is used in Σs1, to the second one, which is
used in Σs2, as described below.

D. Second control law

The second Lyapunov function, J2(x), is defined to be

J2(x) =
1
2

(
kp2x

2
2 + kd2x

2
4

)
+ ∆1, (24)

where kp2 > 0 and kd2 > 0 are constants.

The angle, x2, and the angular velocity, x4, of the second
link approach zero if J̇2(x) is negative. Equations (24) and
(9) yield

J̇2(x) = x4 [kp2x2 + kd2fη(x) + kd2bη(x)τ2] . (25)

So, if the second control law is chosen to be

C2 : τ2 = τ̃2 − λ2sat(x4/Φ2), (26)

where λ2 > 0 and Φ2 > 0 are constants, and

τ̃2 := −kp2x2 + kd2fη(x)
kd2bη(x)

, (27)

then
J̇2(x) = −kd2λ2bη(x)x4sat(x4/Φ2) ≤ 0 (28)

holds when x is in the swing-up area because kd2 > 0, λ2 > 0
and bη(x) > 0. When the state x is in the swing-up area, the
second link straightens out in a natural way, as shown in the
next section.

Note that the second Lyapunov function contains only the
angle and angular velocity of the second link. Thus, (26) only
guarantees that the second link straightens out naturally. Since
the energy of the acrobot may change dramatically while (26)
is being applied, which is clearly undesirable, we need to
improve (26) to guarantee that no abrupt change occurs, and
that the energy of the acrobot increases to E0 and is kept near
that value. A fuzzy controller is employed for this purpose.

Substituting (26) into (18) yields

Ė(x) = x4τ̃2 − λ2x4sat(x4/Φ2). (29)

In general, Ė(x) is not always zero, i.e., the energy changes
when a control action is performed. So, we decompose λ2 into

λ2 = λα(1 + r), − 1 < r < 1, (30)

where λα > 0 is a constant. And we design a fuzzy controller
to regulate the parameter r in order to achieve the goals
mentioned above. The fuzzy controller has two inputs: the
difference between the energy of the acrobot and E0,

e := E(x) − E0, (31)

and the signal w = x4τ̃2. The fuzzy output of the fuzzy logic
is rx. The fuzzy relations between the inputs and output are
listed in Table I, where NB, NM, ZR, PM and PB stand for
negative big, negative medium, zero, positive medium, and
positive big, respectively.

The crisp output, r, is obtained from the center-of-gravity
defuzzifier rx. The derivative of the energy, Ė(x), is regulated
by the output of the fuzzy controller, r, so as to make the
energy of the acrobot reach the prescribed value, E0, and
maintain it almost unchanged around E0. Since the change
in energy is kept to a minimum while the acrobot straightens
out in a natural way, the acrobot easily enters the attractive
area.

The second switching condition is

T2 : J3(x) < J2(x), (32)

which satisfies the condition in (16). J3(x) is the third
Lyapunov function, which is explained in the next section.



TABLE I

FUZZY CONTROL RULES (INPUTS: e AND w; OUTPUT: rx).

����w
e

NB NM ZR PM PB

NB NB NB NB NM ZR
NM NB NB NM ZR PM
ZR NB NM ZR PM PB
PM NM ZR PM PB PB
PB ZR PM PB PB PB

E. Third control law

This subsection describes the design of the third control law,
which is employed in the attractive area.

Simple calculations yield the following linear approximate
model of the unstable inverted equilibrium position:

ẋ = Ax + Bτ2, (33)

The fact that the pair (A, B) is controllable [4], as is easily
verified, enables us to design an efficient control law in the
attractive area.

The third Lyapunov function, J3(x), is defined to be

J3(x) = xT Px, (34)

where P is positive symmetric matrix.
An LQR is designed based on the linear state-space model

(33) and the Lyapunov function (34) by optimizing Ja given
as follows,

Ja =
∫ ∞

0

(
xT Qx + Rτ2

2

)
dt, (35)

where Q ≥ 0 and R > 0. The resulting optimal control law is

C3 : τ2 = −Fx, (36)

where
F = R−1BT P, (37)

and P = PT > 0 is a solution of the Riccati equation

AT P + PA − PBR−1BT P + Q = 0. (38)

(36) guarantees J̇3(x) < 0 for any x �= 0 in the attractive
area. Thus, it guarantees the convergence of the motion of the
acrobot to the unstable inverted equilibrium position.

III. STABILITY FOR MULTIPLE CONTROLLERS

In this section, we examine the stability of an acrobot in the
whole motion space when its motion is governed by a control
law based on a non-smooth Lyapunov function.

A. Analysis of stability in swing-up area

In order to analyze the stability, the concept of an invariant
set is first introduced.

Definition 1: [9] Consider the following system:

ẋ = f(x). (39)

A set M is called an invariant set of (39) if any solution, x(t),
that belongs to M at the instant t0 must belong to M at all
past and future times:

x(t0) ∈ M ⇒ x(t) ∈ M, ∀t ∈ �. (40)

In addition, a set MP is positively invariant if it is true at all
future times only:

x(t0) ∈ MP ⇒ x(t) ∈ MP , ∀t ≥ t0. (41)
LaSalle’s Invariance Theorem is used to examine the stabil-

ity.
Lemma 1: [9] (LaSalle’s Invariance Theorem) Let MP

be a positively invariant set of (39); W : MP → �+

be a continuously differentiable function, W (x), such that

Ẇ (x) ≤ 0, ∀x ∈ MP ; Ψ =
{

x ∈ MP |Ẇ (x) = 0
}

; and
Ω be the largest invariant set contained in Ψ. Then, every
bounded solution, x(t), starting in MP converges to Ω at
t → ∞.

It is easy to show that, a set, Ω1, satisfying (x2, x4) = (0, 0)
and E(x) = E0 is given by

Ω1 : 0.5m110x
2
3 + [m1Lg1 + m2(L1 + Lg2)]g cos x1 = E0,

(42)
where

m110 = m11(x)|(x2=0,x4=0)

= m1L
2
g1 + I1 + m2L

2
g2 + I2 + 2m2L1Lg2 + m2L

2
1;

(43)
Ω1 is a positively invariant set; and the conditions (42) describe
a periodic circular movement in x1 and x3.

Since the first control law, which is based on the first
Lyapunov function (17), is operative before the singularity
occurs, we do not need to consider the singularity while it
is being employed. Thus, we have the following lemma for
the first control law.

Lemma 2: The control law (20), which is based on the
first Lyapunov function (17) and is employed before the
first switch, makes the acrobot move towards the positively
invariant set Ω1 given by (42).

Proof: In order to apply Lemma 1, we first have to define
several positively invariant sets. Consider the system (12) with
the first control law (20). Clearly, �4 is a positively invariant
set of the control system. So, we have MP = �4. Now, let us
construct Ψ =

{
x ∈ MP |J̇1(x) = 0

}
. Note that J̇1(x) = 0

implies x4 = 0. From (17) and (18), it is clear that these
conditions mean that J1(x), x2, and E(x) are constant. There
are two cases when E(x) is constant: E(x) = E0 and E(x) �=
E0. When E(x) = E0, (9) and (20) yield x2 = 0. A simple
calculation shows that the trajectory of the first link follows a
circular orbit given by (42).

On the other hand, the case E(x) �= E0 is never true, as
the following proof demonstrates.

Assume that E(x) �= E0 holds and define E∆ = E(x)−E0.
Since x4 = 0 and x2 = x20 = ct., (9) and (20) give

fη0

bη0
=

kp1x20 + kd1fη0

kd1bη0 + ke1E∆
, (44)



where
fη0 = fη(x)|(x2=x20,x4=0),
bη0 = bη(x)|(x2=x20,x4=0) = ct.

This yields

τ2 = −fη0

bη0
= −kp1x20

ke1E∆
= ct., (45)

Substituting (10) into the above equation, we obtain

fη0 = S1x
2
3 + U1 sin x1 + V1 cos x1 = W1. (46)

At the same time, E(x) = ct. and x4 = 0 give

E(x) = S2x
2
3 + U2 sin x1 + V2 cos x1 = W2. (47)

Equations (46) and (47) yield

U3 sin x1 + V3 cos x1 = W3. (48)

In (46)-(48), Si, Uj , Vj , and Wj (i = 1, 2; j = 1, 2, 3) are
nonzero constants. From (48), the variable x1 is constant. So,
x3 = 0. For x3 = 0 and x4 = 0, (8) and (9) can be written as

fµ(x) + bµ(x)τ2 = 0, (49)

fη(x) + bη(x)τ2 = 0. (50)

(10), (11), (49) and (50) yield

det {M(x)} |(x3=0,x4=0) = 0, (51)

which contradicts the fact that the determinant of the inertia
matrix, M(x), is positive. Therefore, only the case E(x) = E0

is valid in Ψ.
Since Ω1, which is given by (42), is a positively invariant

set and since Ψ = Ω1, Ω1 is the largest invariant set contained
in Ψ. According to Lemma 1, the control law (20), which is
based on the first Lyapunov function (17) and is operative
only before the first switch, makes the acrobot move toward
the invariant set Ω1.

The stability of the control law (26) is guaranteed by the
following lemma.

Lemma 3: The control law (26), which is based on the
second Lyapunov function (24), makes the states of the second
link of the acrobot converge to the positively invariant set
Ω2 =

{
x ∈ �4|x2 = 0, x4 = 0

}
.

The proof is based on Lemma 1 and is similar to that for
Lemma 2. Thus, it is omitted.

B. Stability for multiple controllers

A system, e.g., (12), is stabilizable if there exists a candidate
Lyapunov function, J(x), for which decreases monotonically
in the whole motion space. First, the following assumptions
and definitions are given.

Assumption 1: There exist Lyapunov functions, J1(x),
J2(x) and J3(x) for each pair (C1, Σs1), (C2, Σs2) and
(C3, Σa), respectively.

Assumption 2: Σs1, Σs2 and Σa together cover the whole
motion space Σ, i.e.,

Σ = Σs1

⋃
Σs2

⋃
Σa. (52)

Definition 2: [10] (Non-smooth Lyapunov Function) A
non-smooth Lyapunov function, J(x), for the system (12) in
the whole motion space, Σ, is a Lyapunov function given by

J(x) =
3⋃

i=1

Ji(x), (53)

which satisfies

J(x(t2)) < J(x(t1)), t2 > t1, 0 ≤ t1, t2 < ∞. (54)
Definition 3: [10] (Minimum-switching strategy) Control

law Ci is employed when Ji(x) < Ji−1(x); otherwise control
law Ci−1 (i = 2, 3) is employed.

Note that in Definition 2, the condition J̇(x) < 0 for an
ordinary differentiable function is replaced by a monotoni-
cally decreasing condition for an undifferentiable non-smooth
function. The stability of our control method is guaranteed by
the following theorem.

Theorem 1: For the non-smooth Lyapunov function J(x)
(53) employed for the system (12), the closed-loop system is
stable under the assumptions (1)-(2) if the minimum-switching
strategy is used.

Proof: The first Lyapunov function is chosen to be (17).
It increases the energy and stretches out the second link. The
second Lyapunov function is chosen to be (24). It avoids the
singularity produced by the first control law, and continues to
stretch out the second link. A suitable choice of the coefficients
in (17) and (24) guarantees that the second Lyapunov function
is less than the first one.

The constant ∆1 in (17) and (24) is used to satisfy the
condition (54) in Definition 2, i.e., to guarantee that J3(x) <
J2(x). It is selected to be

∆1 = J3(x)|xα
, (55)

where xα ∈ Σa is the state for which the switching condition
(16) is satisfied for the first time and control is first switched
from the second to the third law. Note that, when (23) (or
(16)) is satisfied and the controller is switched from C1 to C2

(or from C2 to C3), J2(x) < J1(x) (or J3(x) < J2(x)) also
holds.

The sets for the switching condition {T1, T2} specify the
timing of the switch between controllers. The control law
governing the whole motion space is related to the non-
smooth Lyapunov function, J(x). Note that J(x) is decreasing
at the switching points; so, the minimum-switching strategy
guarantees that no switching back and forth between two
controllers occurs. This guarantees the stability of the system
in the whole motion space.

IV. SIMULATIONS

This section presents simulation results that demonstrate the
validity of the control strategy explained above.

The parameters of the acrobot are m1 = 1 kg, m2 = 1 kg,
I1 = 0.083 kg · m2, I2 = 0.33 kg · m2, L1 = 1 m, L2 = 2 m,
Lg1 =0.5 m and Lg2 =1 m.

The parameters in (16), (17), (20), (23), (24), (26), and (30)
are selected to be β1 = β2 =

π

6
, ε = 1.2 J, kp1 = kd1 = 1,
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Fig. 2. Simulation results for switching of control laws based on a non-smooth Lyapunov function

ke1 = 0.2, λ1 = 38, Φ1 = 10, ζ = −2, kp2 = kd2 = 1,
Φ2 = 5 and λα = 0.5.

Figure 2 shows simulation results for the initial state x =
[π 0 0 0]T . The non-smooth Lyapunov function decreased
monotonically. The control law successfully regulated the
motion of the acrobot, making it smoothly converge to the
unstable inverted equilibrium position. These results demon-
strate that control based on a non-smooth Lyapunov function
is very effective.

V. CONCLUSIONS

This paper has provided the control strategy to guarantees
the stability of the acrobot in the whole motion space under a
minimum-switching strategy based on non-smooth Lyapunov
function consisting of a combination of three Lyapunov func-
tions. This paper has also clearly shown how to choose three
Lyapunov function to obtain the control objective. The validity
of the strategy has been demonstrated through simulations. The
results showed that the acrobot swings up and is balanced at
the unstable inverted equilibrium position very quickly.
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