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Abstract— This paper presents a new method of improving
the disturbance rejection performance of a servo system
by estimating an equivalent input disturbance. First, the
concept of equivalent input disturbance is defined. Next, the
configuration of an improved servo system employing the new
disturbance estimation method is described. Then, a method
of designing a control law employing the disturbance estimate
is explained. Finally, the positioning control of a two-finger
robot hand is used to demonstrate the validity of the method.

I. INTRODUCTION

Over the past few decades, a considerable number of
studies have been devoted to the estimation of an unknown
disturbance [1]–[7]. While most of these methods require
the differentiation of measured outputs, the methods in [1]–
[4] do not. In [1] and [2], rank conditions are imposed on
the unknown inputs; [3] requires information on the peak
value of a disturbance; and [4] uses the inverse dynamics
of the plant directly in the construction of the estimator.
She and Ohyama proposed a new method that overcomes
the drawbacks of these methods [8]. It requires neither the
differentiation of measured outputs nor information on a
disturbance, and does not use the inverse dynamics of the
plant directly, thereby avoiding the cancellation of unstable
poles/zeros. However, the state of the plant is needed for
the estimation.

On the other hand, from the standpoint of the control
system, it is more reasonable to estimate an equivalent input
disturbance than to estimate the disturbance itself because
we have to use the control input to improve the disturbance
rejection performance.

This paper first defines an equivalent input disturbance for
a system containing a disturbance that may not necessarily
be imposed on the control input channel. Then, a new
method of disturbance estimation based on the output of
the plant is described. Finally, an improved servo system
employing the disturbance estimate is constructed.

II. CONSTRUCTION OF IMPROVED SERVO SYSTEM

This section first defines an equivalent input disturbance,
and then describes the configuration of an improved servo
system constructed by inserting a disturbance estimator into
a conventional servo system.
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A. Definition of equivalent input disturbance

Consider the linear time-invariant plant shown in Fig. 1.⎧⎨
⎩

dxo(t)
dt

= Axo(t) + Bu(t) + Bdd(t),

yo(t) = Cxo(t),
(1)

where A ∈ Rn×n, B ∈ Rn×nu , Bd ∈ Rn×nd , and
C ∈ Rny×n. We consider the SISO case, which means
that nu = 1 and ny = 1. Note that, since B and Bd may
have different dimensions, the disturbance may be imposed
on a channel other than that of the control input, and the
number of disturbances and associated input channels may
be larger than one. However, if we assume that a disturbance
is imposed only on the control input channel, as shown in
Fig. 2, then the plant is given by⎧⎨

⎩
dx(t)

dt
= Ax(t) + Bu(t) + Bde(t),

y(t) = Cx(t),
(2)

Then, an equivalent input disturbance is defined as follows:
Definition 1: Let the control input be u(t) = 0 and

x(±∞) = 0. Then, the output of the plant (1) for the
disturbance d(t) is yo(t), and the output of the plant (2)
for the disturbance de(t) is y(t). The disturbance de(t) is
called an equivalent input disturbance of the disturbance
d(t) if y(t) = yo(t) for all t ≥ 0.

The following assumption is made about the plant.
Assumption 1: (A,B) is controllable and (C, A) is ob-

servable.
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If the trajectory of the output caused by the disturbance
d(t) is yd(t) ∈ L1 ∩ L∞, then from the concept of
stable inversion [9], [10], it is known that there exists an
equivalent disturbance, de(t) ∈ L1 ∩ L∞, on the control
input channel that produces the same trajectory. This leads
to the following lemma.

Lemma 1: There always exists an equivalent input dis-
turbance, de(t) ∈ L1 ∩L∞, on the control input channel of
the disturbance, d(t), that is imposed on the plant (1); and
the output it produces belongs to L1 ∩ L∞.

B. Estimation of equivalent input disturbance

The configuration of an improved servo system is shown
in Fig. 3. It can be viewed as a conventional servo system
(internal model, state observer and state feedback) com-
bined with a disturbance estimator that produces an estimate
of an equivalent input disturbance. KR and KP are the
state-feedback gains; L is the observer gain; and F (s) is a
low-pass filter that limits the angular frequency band of the
disturbance estimate.

In Fig. 3, for the state observer,

dx̂(t)
dt

= Ax̂(t) + Buf (t) + LC[x(t) − x̂(t)] (3)

holds. Letting the estimate of the equivalent input distur-
bance be d̂(t) allows us to write

dx̂(t)
dt

= Ax̂(t) + B[u(t) + d̂(t)] (4)

for the plant with an equivalent input disturbance. Without
loss of generality, we assume BT B �= 0. Then, (3) and (4)
yield

d̂(t) =
BT

BT B
LC[x(t) − x̂(t)] + uf (t) − u(t). (5)

d̂(t) is filtered by F (s), which selects the angular frequency
band for the disturbance estimation. Thus, the filtered
disturbance estimate, d̃(t), is given by

D̃(s) = F (s)D̂(s), (6)

where D̃(s) and D̂(s) are the Laplace transforms of d̃(t)
and d̂(t), respectively.

Remark 1: Since an estimate is obtained for an equiva-
lent input disturbance, the channel on which the equivalent
disturbance is imposed might be different from that of
the actual disturbance. So, generally speaking, a full state
observer must be used to estimate the state of the plant. And
if a disturbance exists, then the estimated state of the plant
might be different from the actual state resulting from the
effects of the disturbance. Looking at this from a different
perspective, in (4), we can take the state of the plant with an
equivalent input disturbance to be x̂(t), which is exactly the
state of the observer, and consider the difference between
the output of the real plant and that of the plant with an
equivalent input disturbance to be caused by the difference
between the exact value and the estimate of the equivalent
input disturbance.
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C. Disturbance rejection

Combining the disturbance estimate (6) with the original
servo control law yields the following control law:

u(t) = uf (t) − d̃(t), (7)

as shown in Fig. 3. This modified control law improves the
disturbance rejection performance. The method described
in this paper has two important characteristics not provided
by previous methods:

1) The configuration of the system is very simple.
2) The disturbance rejection performance can easily be

improved by incorporating the disturbance estimate
directly into the designed servo control law.

Regarding the first characteristic, the improved servo system
can be viewed as a conventional servo system enhanced by
the plugging-in of a disturbance estimate. So, the structure
is very simple and very easy to understand. Regarding
the second characteristic, a suitable design of the observer
guarantees that d̂(t) converges to de(t), and |d̂(t)− d̃(t)| <
|d̂(t)| is guaranteed by a properly designed low-pass filter,
F (s). So, d̃(t) is a good approximation of de(t).

This system also has another very important characteris-
tic: the state-feedback control law, and the observer and low-
pass filter can be designed independently, as long as stability
is the only concern. This is discussed in the following
subsection.

D. Design of filter and state observer

The state observer gain, L, and the low-pass filter, F (s),
should be designed so that they do not destroy the stability
of the system. Regarding the stability issue, the system with
r(t) = 0, d(t) = 0 and ∆x(t) = x̂(t) − x(t) is illustrated
in Fig. 4. The plant is

dx(t)
dt

= Ax(t) + Bu(t). (8)

Combining (3) and (7) with the above equation yields

d∆x(t)
dt

= (A − LC)∆x(t) + Bd̃(t). (9)

On the other hand, (5) is equivalent to

d̂(t) = − BT

BT B
LC∆x(t) + d̃(t). (10)

(9) and (10) yield the transfer function from d̃(t) to d̂(t):

G(s) = 1 − BT

BT B
LC[sI − (A − LC)]−1B

=
BT (sI − A)[sI − (A − LC)]−1B

BT B
. (11)

Thus, we obtain the following from the small-gain theorem.
Theorem 1: For a suitably designed state-feedback gain,

[KP KR], the control law (7) guarantees the stability of the
control system if

‖G(jω)F (jω)‖∞ < 1, ∀ω ∈ [0, ∞). (12)
Remark 2: The stability conditions for the improved

servo system can be broken down into two parts. First,



the state-feedback servo system is stable. Second, condition
(12) holds. Since the only parameters in condition (12) are
L and F (s), their design is much simpler than that in the
disturbance observer method [4], which requires a low-pass
filter to guarantee the stability of the whole system.

In the angular frequency band for disturbance rejection,

Ωr = {ω : ω ≤ ωr} ,

it is most desirable to choose a low-pass filter, F (s), to be

|F (jω)| ≤ 1, ∀ω ∈ Ωr. (13)

So, we have to choose an observer gain, L, such that

‖G(jω)‖∞ < 1, ∀ω ∈ Ωr. (14)

On the other hand, for the system{
dxL

dt
= AT xL + CT uL,

yL = BT xL,
(15)

consider state feedback parameterized by a scalar, ρ ≥ 0:

uL = LT
ρ xL.

If (AT , CT , BT ) is a minimum-phase system, then we can
obtain an LT

ρ that provides perfect regulation [11], [12], and

lim
ρ→∞[sI − (A − LρC)]−1B = 0

holds. Note that [sI − (A − LρC)]−1B is part of the
numerator of G(s), which means that a large enough ρ
makes |G(jω)| sufficiently small for all ω ∈ Ωr. So, based
on the concept of perfect regulation, we can obtain an L and
F (s) that satisfy the condition (12). The design procedure
is explained in the next subsection.

E. Design procedure

Summarizing the above results, we can now give a design
algorithm for the improved servo system.

Design algorithm:

Step 1.Design the feedback gains KP and KR for a con-
ventional servo system using an existing method
(for example, the optimal control method).

Step 2.Choose an angular frequency band, Ωr, for distur-
bance rejection.

Step 3.Select a large enough ρ that yields an L that makes
(14) true.

Step 4.Plot 1/G(jω), and select a F (s) that satisfies
|F (jω)| < |1/G(jω)| for all ω ∈ [0,∞) based
on the gain characteristics of its Bode plot.

III. NUMERICAL EXAMPLE

We employed the method described above for the po-
sitioning control of a two-finger robot hand [13] with the
structure shown in Fig. 5. One of the fingers is immobile,
and the other is driven by a DC motor and a belt-pulley

DC motorBelt-pulley

mechanism

Mobile finger
Immobile finger

l(t)

Fig. 5. Structure of two-finger robot hand.

mechanism. The dynamics of the hand can be derived using
Lagrange’s equation.

M
d2l(t)
dt2

+ Kf
dl(t)
dt

= f(t) + df (t),

where l(t) [m] is the distance that the finger moves; M [kg]
is the mass of the moving part; Kf [kg/s] is the coefficient
of viscous friction; and f(t) [N] and df (t) [N] are the
driving forces produced by the motor and the disturbance
force, respectively. When the dynamics of the electric circuit
of the motor cannot be ignored, the dynamics have the form

Rei(t) + Le
di(t)
dt

= uM (t) − KE
dl(t)
dt

+ du(t),

f(t) = KT i(t),

where Re [Ω] is the resistance of the motor, Le [H] is the
inductance of the motor, KE [Vs/m] is the back electromo-
tive force constant, KT [N/A] is the force constant, i(t) [A]
is the armature current, u(t) [V] is the control voltage, and
du(t) [V] is the disturbance voltage. Choosing the state to
be xo(t) = [l(t) dl(t)/dt i(t)]T yields the following values
for the parameters in (1).

A =

⎡
⎣ 0 1 0

0 −Kf/M KT /M
0 −KE/Le −Re/Le

⎤
⎦ , B =

⎡
⎣ 0

0
1/Le

⎤
⎦ ,

Bd =

⎡
⎣ 0 0

1/M 0
0 1/Le

⎤
⎦ , CT =

⎡
⎣ 1

0
0

⎤
⎦ .

The fact that this plant is a minimum-phase system allows
us to use the proposed method to design an observer gain
and a low-pass filter. We assume that M = 1, Kf =
1, Re = 2, Le = 1, KT = 1, and KE = 1. Then, we
let the reference input be the unit step signal{

r(t) = 1(t),
AR = 0, BR = 1,

(16)

and the disturbances be

du(t) =
{

0, t < 10,
5 sin 2πt + 2.5 sin 4πt + 1.25 sin 6πt, t ≥ 10;

df (t) =
{

0, t < 10,
0.2 sin 2πt−2 tanh t+4 tanh(t − 10), t ≥ 10.

(17)
The improved servo system was designed by following

the design procedure in the previous section. First, the
disturbances were ignored; and a single augmented-state
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representation containing the plant and an internal model
of the step signal [14] was constructed:

d

dt

[
δx(t)
δxR(t)

]
=

[
AP 0
−CP 0

] [
δx(t)
δuf (t)

]

+
[

BP

0

]
δuf (t),

(18)

where
δx(t) = x(t) − x(+∞),
δxR(t) = xR(t) − xR(+∞),
δuf (t) = uf (t) − uf (+∞).

Minimizing the performance index

JK =
∫ ∞

0

{[
δxT (t) δxT

R(t)
]
QK

[
δx(t)
δxR(t)

]
+RKδu2

f (t)
}

dt,

QK = diag{100 1 1 100},
RK = 1

yields

[KP KR]=[−19.9779 − 9.13249 − 2.82338 10.0000] .

Next, Ωr was selected by setting ωr to 100 rad/s. Then,
an optimal filter gain, L, was designed that minimized the
performance index

JL =
∫ ∞

0

{
ρxT

L(t)QLxL(t) + RLu2
L(t)

}
dt,

QL = diag{1 1 109},
RL = 1

for the system (15). ρ was adjusted so that

‖G(jω)‖∞ < 1, ∀ω ∈ Ωr.

The result was ρ = 105, which yielded

L =
[

554.919 103967 9790401
]T

.

Finally, the low-pass filter

F (s) =
1

Ts + 1
, T = 0.01

was chosen. It is clear from Fig. 6 that the stability condition
(12) is satisfied. So, the improved servo system is stable.
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Fig. 7. Simulation results without disturbance estimation.

Some simulation results are shown in Figs. 7 and 8. In
Fig. 7, the step reference input is imposed at t = 1 s. After
the system enters the steady state, the disturbances (17) are
imposed on the system starting at t = 10 s.

Since servo control just suppresses the disturbances to
some extent but cannot reject them, a large steady-state
tracking error (peak-to-peak value: 0.04401) results. The
corresponding control input is also shown in the same
figure. On the other hand, a big improvement is obtained
when the proposed method is employed. The simulation
results obtained with disturbance estimation are shown in
Fig. 8. It can be seen that the disturbance is rejected satis-
factorily in both the transient and steady states. The steady-
state tracking error drops to 0.00291 (peak-to-peak), which
is less than 7% of that without disturbance estimation.
The estimated equivalent input disturbance is also shown
in the same figure. It increases the control input, thereby
suppressing the effects of the disturbances.

IV. CONCLUSIONS

This paper describes a new method of improving the
disturbance rejection performance of a servo system by
estimating an equivalent input disturbance. Based on this
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method, an improved servo system configuration was de-
vised. The proposed method has some significant advan-
tages over existing methods:

• It does not require the differentiation of measured
outputs.

• It avoids cancellation of unstable poles/zeros.
• The stability of the system can be broken down into

two independent parts: state feedback, and observer

and low-pass filter.
• The configuration is very simple.

The validity of the method was demonstrated using the
positioning control of a two-finger robot as an example.
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