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Modeling of Reheating-Furnace Dynamics Using Neural Network
Based on Improved Sequential-Learning Algorithm

Yingxin Liao, Min Wu and Jin-Hua She

Abstract—In order to model the dynamics of a billet excessive number of hidden neurons [9]. In order to reduce
reheating furnace, a multi-input multi-output radial-basis-  the computational load, Platt presented a sequential-learning
function neural network is constructed based on an im- scheme, which adds hidden neurons to the network based

proved sequential-learning algorithm. The algorithm employs .
an improved growing-and-pruning algorithm based on the ©N the novelty of new data [10]. Later, Kadirkamanathan

concept of the significance of hidden neurons, and an extended @nd Niranjan presented an extended Kalman filter (EKF) to
Kalman filter improves the learning accuracy. Verification replace the LMS method of adjusting network parameters

results show that the model thus obtained accurately predicts [11]. Their method provides better learning precision and
the temperatures of the various zones of the furnace. produces a compact network. However, there is a serious
drawback in Platt's and Kadirkamanathan and Niranjan's
methods in that, once a hidden neuron is created, it cannot
A billet reheating furnace is a key apparatus in the stegiter be removed. Yingwaet al. presented a node-removing
rolling process, and is also the apparatus that consumes thethod to solve the problem [12], but the selection of
most energy. The main features of the furnace dynamigie neurons to be pruned requires a great deal of compu-
are that they are nonlinear and time-varying and havgtion. In [13], Huanget al. introduced a concept called
distributed parameters. The uniformity of the temperatursignificancefor hidden neurons based on their statistical
of billets directly affects the quality and quantity of steelcharacteristics, and used it in a learning algorithm to build a
products, the amount of energy consumed, and the lifetinggarsimonious network. Their scheme has the characteristics
of the rolling mill. Due to the soaring cost of raw materialsof rapid learning, producing a compact network, and good
and energy, and increasingly stringent requirements fewerall performance.
product quality, steel companies are carrying out a great This study employed an RBF NN to construct a dy-
deal of research on the modeling and model-based contighmic model of a reheating furnace. A sequential-learning
of reheating furnaces [1]-[3]. A common way of modelingalgorithm that makes use of the concept of significance is
reheating-furnace dynamics is to divide the furnace intemployed in the modeling process. Unlike existing models,
zones and then to construct a mathematical model for eaghe new one is a multi-input multi-output (MIMO) model,
one. Since control is usually implemented independently iand takes the coupling of zones into account. The model
each zone, without taking the coupling between zones intgelds accurate temperature estimates and thus is suitable
account, the control performance is not satisfactory [1]. for temperature control. It is a promising way of improving
Since radial-basis-function (RBF) neural networks (NNsjhe temperature control performance of a reheating furnace.
have a topologically simple structure and can reveal the In this paper, first, a model for predicting the temper-
learning process in an explicit manner [4], they are widelwture distribution of the furnace is constructed using an
used in the control of complex industrial processes [5]-[8RBF NN. Then, a growing-and-pruning (GAP) algorithm
Back-propagation (BP) learning is a common technique fdg introduced to simplify the network based on the concept
estimating weights for connecting hidden and output newf the significance of hidden neurons, and an EKF is used
rons, and is based on the linear least-mean-square (LMf) adjust the parameters of the neurons to improve the
method. It is a batch-learning method and has the drawbacksirning precision. A strategy of nearest-neuron regulation
not only of being time-consuming, but also of producing afs employed to identify the hidden neurons to be pruned.
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Fig. 2. Structure of RBF NN.
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The air/gas ratio usually remains within a narrow range,

and is commonly taken to be constant. For simplicity, we
Fig. 1. Reheating furnace. do the same. Since the heating process has a time lag and

is dynamic, the inputs of the network are chosen to be

the delayed gas flux and temperature distributions in the
the high-temperature flue gas. This gives the gas a higAmperature control zones; and the outputs are the estimated

heating efficiency. So, only the heating and soaking zondgMmperatures in those zones.

are heated with a gas-air mixture. Nozzles at the top and
bottom of the furnace send the gas mixture into these zones. . . .
The temperature of the preheating zone is monitored, thA practlcal mode_l of fur_nace temperature requires on-|_|ne
not controlled; while the temperatures of the heating ang2ning aqd real-ur_ne adjustment. On the other hand,_smce
soaking zones are controlled. The heating zone is furth BP 'eaf.r"!"g "?"Qo“th.m pro.duces a large num_ber of h!dden

divided into two subzones (upper, lower); and the soakin eurons, it is difficult (if not impossible) to use it t_o achieve
zone is divided into four (upper left, upper right, lower left, al-time gdjustment of the parameters._ In this paper, a
lower right). The subzones are strongly coupled in that th AP algorithm and an EKF-based learning scheme solve

temperature of each subzone is greatly influenced by e Pff"b'em- -::T]e dSAP aIgonthmAugllzesEtQE _concegttoftth_e
temperatures of the others. significance of hidden neurons. And an is used to train

. . the neural network because it provides faster convergence
Due to the complexity of the heating process and th P 9

. . n gradient- Igorithms [15].
dynamic changes that occur in it, it is difficult to obtain an gradient-based algorithms [15]
a rigorous mathematical model for the process through ah Definition and Estimation of Significance

analysis of the mechanism(s) involved. The significance E.;,(k), of the hidden neurork is
An RBF NN is a type of feedforward network, anddefined to be its statistical contribution to the overall output
can be used to obtain a nonlinear mapping [14]. So, wef the RBF NN:
decided to construct an RBF NN as a model for predicting
temperatures within the furnace. The structure is shown in Esig(k) = [lax( / or(2)p(z)dx

Fig. 2. 9
.
e / exp (” fis] )p<z>da:,
x Jk

The network contains three layers: input, hidden, and
kzlv"'ama (3)

output. The input signal is fed into the input neurons and
a Gaussian function to produce its output. It performs whereq;, is the weighting vector connecting tketh hidden

(b) Section view

I1l. SEQUENTIAL-LEARNING ALGORITHM

propagates to the hidden neurons. The hidden layer uses

nonlinear mapping from the vectar:= [z1, z2,---,2;)7  neuron to the overall outputy,(z) is the response of the
to the vectorg := [¢1, ¢2,- -, ]’ k-th hidden neuron to the input vectorfor k = 1,---,m,;
p(x) is the probability density function far; and|| - ||; is
_ lz — prel|? e 1 1) the 1-norm.
1 = exp (_ o2 )’ =Lome (D) (3) involves an integration of the probability density

function, p(z), over the sampling range. This can be done
And the output layer performs a linear mapping frgnto  analytically for some simple but commonly use@), e.g.,



uniform, normal, exponential, and Rayleigh functions [13]. Considering the above conditions, one might think that,
After analyzing sample data from the furnace, we selecteafter learning from each observation, it would be nec-
the probability density function to be the normal samplinggssary to check the significance of all the neurons for
distribution, andE;;, (k) to be the sum of the statistical possible pruning, which is a computationally intensive task.
contributions of neurork (1-norm) to the temperatures of However, a close examination of the network reveals that

all the zones fokk =1,---,m. only the nearest neuron in the last learning step might

_ _ o have become insignificant and needs to be checked for

B. Growing-and-Pruning Criteria pruning. So, there is no need to compute the significance

The following growing-and-pruning criteria are used inof all the. hidden neurons in the n.etwork. This keeps the
this study. computational load small, as explained below.

1) Growing criterion: The learning process involves the
allocation of new hidden neurons as well as the adjustme@t Speeding Up of Parameter Adjustment and Neuron
of network parameters. The RBF NN begins with no hiddeRruning
neurons. As inputs are received sequentially during training,

some of them may initiate new hidden neurons based on tit}1eThe parameterz ?f tEe n(:]urtlj(nsa r;eed to t')lfl adjustgd atnd
following growing criterion. e neurons need to be checked for possible pruning to

Assume thatn observations have been made, the inpui{nlorove the leaming accuracy and to keep the neiwork

and output for the latest observation ase) and y(n), oTRER, FOR B0 PV LG FEETEES O 1 B en
respectively, and.,,,(n) is the center of the hidden neuron P 9 |

nearest:(n) in the sense of the Euclidean distance. Also, |gf@ NeW neuron 1s added, and also that only the nearest

emin D€ the expected approximation accuracy of the outptheur.On mSthefz last Iﬁarnlngl_step neeﬁls It(o ble (t:::ecked fotr
and ¢ be a threshold suitable for the Euclidean distancB “NN9g: =0, for €ach sampiing, we check only the heares

betweenz(n) and u,,,(n). For the latest observation neuron for adjustment and pruning. Since onlysiagle
A ' neuron is checked and/or adjusted, learning is very rapid.

e(n) = y(n) — f(z(n)). (4) This ensures that the network can be used for real-time
temperature estimation.
Two conditions must be satisfied before a new neuron For the sampling time:, the parameter vector of the
(the (k + 1)-th) is added. First, nearest neuron is

) =gl = € ® wnln) = [ahn) i) o @)

m

wheree is a positive number. Second, the significance of , - . .
the new hidden neuron must satisfy wherea,, (n) is the coefficient vector of the linear mapping

from the nearest neuron to the output, defined as in (2),
B lz — g ando,,(n) is the width of the nearest neuron. If the latest
Bsig(k +1) = flokalla /meXp <_ o7 p(z)dz observation,(z(n), y(n)), does not meet the criterion for

> €mins adding a new hidden neuron, the parameters of the nearest

(6) neuron are adjusted using the EKF method as follows:

where
W (n) = wp(n — 1) + K(n)e(n),
e e(n), K(n)=P(n—1)A(n) [AT (n)P(n—1)A(n)+R(n)] ",
prar = aln), P(n) = [I - K(n)A™(n)] P(n— 1) + QI,
andp (> 0) is an overlap factor that determines the overlap| 20, (n) T
of the responses of the hidden neurons in the input space. Om(2(n) o2,(n) (@(n) = pim(n))
If these conditions are met, then tije 4 1)-th neuron is 200 (1) )
added to the network. Gm(x(n)) o3 (n) lz(n) — pm ()],
(5) ensures that a new neuron is added only under the " (8)

condition that the input data is sufficiently far from existingwhere e¢(n) is defined in (4);K(n) is the gain matrix of
neurons. And (6) ensures that the newly added neurghe EKF; P(n) is the error covariance matrixd(n) is the
significantly improves the learning accuracy (its significancgradient matrix;2(n) is the variance of the measurement
is larger thare,,;y). noise; andeg,,(z(n)) is the nonlinear mapping frona(n)

2) Pruning criterion: If a neuron has a significance of to the nearest neuron, for which the entries are defined in
less thane,,;,, then its contribution to the network is too (1). All these values are for the latest sampling time(
small and it should be removed. Otherwise, it should bis a scalar that determines the number of allowable random
retained. steps in the direction of the gradient vector.



TABLE |

u(n) , ()
—v—’| Reheating Furnace Process }—T*‘—’ UNBIASED DEVIATION IN ERROR OF ESTIMATED TEMPERATURE FOR
EACH ZONE.
yn—1) ;
y(n=-2) ] Upper | 1.5824
o Heating zone Cower | 1.4583
N . Left | 1.6510
e Pl . Soaking zone/Uppel Right | 1.6044
p RBF Network | 2, ) _ Left | 1.5079
u(n—1) - Soaking zone/Lower[ Right | 1.5161
u(n —2)
u(n —q)
z-1 z-1 21 . . )
( predict the temperatures of the heating and soaking zones of
1 | GAP-EKF Learning | e(n) a walking-beam reheating furnace. The results of actual runs
(sampling period: 5 s) were used to construct the training

and testing data sets. As for the number of delay steps
for the output and control input, since fewer steps vyield
a model with a lower order, it is desirable to use as few
IV. DYNAMIC RBE-BASED MODEL steps as possible. Adjustment through trial and error showed
that a one-step delay for both the output and control input

Models for predicting the various temperatures of &o4yced a model with sufficient accuracy for practical use.
reheating furnace are usually based on the principle of the,

conservation of energy [1]. But the precision of the model is he1 g=1

. i . . =1, qg= (10)
low, and its real-time performance is also unsatisfactory due
to the large computational load. In this paper, we employ afas used in the simulation. The model initially creates one
RBF NN to model the heating process. However, a standaffidden node based on the first observation. Then, learning
RBF NN permits only static mapping; but since the processased on the improved sequential-learning algorithm ex-
is dynamic, it is necessary to construct a dynamic NMlained in the previous section is used to make adjustments.
to describe it. This can be accomplished by feeding thRegarding the choice af,;, ande, smaller values yield a
delayed output of the network back into the input. That iSarger number of hidden nodes. However, since only the

Fig. 3. Configuration of dynamic RBF model.

the output of the network is produced as follows: parameters of the nearest node are adjusted, if the number
. Ie of hidden nodes becomes large, the precision of the model
§(n) = Gla(n)), may be degraded. So, it is desirable to use large values for
() = [y(n—1) -+ y(n—h) u(n—1) - u(n—q)|" e Thus tho oo o
v N0 1. ’ emin @nde. Thus, the parameters of the GAP algorithm were

’(9) chosen to be:

whereG(-) is the mapping generated by the RBF NiNn) emin = 80, € = 40, p=0.4. (11)
(n = 0,1,---) is the input of the network; ang and h
are the numbers of delay steps of the input and outputhe verification results in Figs. 4-6 show that the error in
respectively. This dynamic RBF NN is used to simulate théhe estimated temperature of each subzone is always less
nonlinear dynamic heating process of the furnace. Note thttan 5.0°C, except for two sharp peaks at 345 and 1265
u(n) =0 andy(n) =0 for n < 0. seconds. The unbiased deviation in the error of the estimated
(9) is a forward predictor. It is important for modeling thetemperature for each zone is shown in Table I.
continuous rise and fall in the temperature of the furnace, Sharp spikes appear in the curves for the error in the
and is used to predict the temperature at the next samplipgedicted temperature. They are caused by an abrupt change
time. Fig. 3 shows the configuration of the dynamic RBFn the air/gas ratio of the lower-left soaking zone. It should
model. In the figure, the control vectafn) (n = 0,1,---)  be recalled that the dynamic RBF model was built on the
is the gas flux and the output vectg(n) (n = 0,1,---) assumption that the air/gas ratio was constant. Howeuver,
gives the temperatures of the different zones of the furnacgnce it was not possible to manually change the gas and
air fluxes simultaneously, the change in the air/gas ratio was
sometimes relatively large in the left soaking zone (Fig. 7),
The prediction of the temperatures of the zones of thalthough it remained within a narrow range in the other
furnace is the foundation of temperature optimization andones. This is the reason for the spikes. It is desirable to
control, and the prediction accuracy determines whether &eep the air/gas ratio constant in the reheating process;
not the control results are satisfactory. This section preserdaad this can be accomplished by using some method to
the results of verification tests based on actual runs thatitomatically adjust the ratio. On the other hand, the spikes
show the modeling method described above to be vewmre notreally a serious problem: If the predicted temperature
effective. The method was used to build an RBF NN tas treated as a perturbed signal, the spikes can easily be

V. VERIFICATION AND DISCUSSION



filtered out by existing signal processing techniques. As an
example, the error in the predicted temperature of the upper
heating zone obtained by the five-point moving-average
method is shown in Fig. 8. Since our model takes the
coupling of zones into account, changes in the air/gas ratio
of the lower soaking zone affect not only the predicted
temperature of the lower soaking zone, but also the pre-
diction results for other zones. Thus, this method produces
more realistic values than other methods. The engineering
specification for the tolerance in the estimated temperature
is usually less tharB0°C. The filtered estimates clearly
satisfy this requirement. A largerproduces smaller spikes

in the outputs. e.g., Fig. 9 shows simulation results for the
upper-left soaking zone with = 0.8. Clearly, the spikes
are much smaller than those in Fig. 6 (a). For comparison,
verification results for the upper-left soaking zone based
on BP learning are shown in Fig. 10. A bias appears
in the predicted temperature, and the unbiased deviation
is 7.9412°C. Clearly, the GAP-EKF learning algorithm is
superior to the BP learning algorithm.

The GAP-EKF learning algorithm converged within
seven steps. Since the NN is trained at every sampling time
using the latest observation data, and since only the param-
eters of the neuron nearest the latest input are adjusted, the
learning process is very rapid, and the network makes highly
accurate temperature predictions. In the verification test, it
took only 0.01 s to train the network, while the sampling
period was 5 s. So, the speed of sequential learning based on
a GAP algorithm and an EKF easily meets the requirements
for real-time online learning.

VI. CONCLUSION

This paper presented a dynamic model of the tem-
peratures within a complex billet reheating furnace. The
model is based on an RBF NN; and the combination of a
GAP algorithm and an EKF provide the network with the
ability to carry out random nonlinear mapping and quick
sequential learning. These characteristics enable the model
to handle nonlinearity, strong coupling, time variance, dis-
tributed parameters, etc., with sufficient speed and accuracy.
Unlike conventional modeling methods, which, for example,
only consider the heat exchange due to radiation [16] or
ignore the generation of carbon monoxide [17], no such
assumptions were made to predict the rise and fall in the
temperatures of the furnace. Since our new model produces
temperature estimates without the need to solve complex
partial differential equations, it is fast enough for real-time
learning. Even though the model is very simple, it provides
the required estimation accuracy. Verification tests showed
the model to be suitable for furnace process control, and
the same method can also be used to model other complex
industrial processes.

This NN reheating-furnace model was employed for the
immune-based optimal control of furnace temperature, and
the results were found to be superior to those obtained by
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