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Abstract
 This paper describes a control strategy for the control of

an acrobot. The strategy combines a model-free fuzzy

control, a fuzzy sliding-mode control and a model-based

fuzzy control. The model-free fuzzy controller designed

for the upswing ensures that the energy of the acrobot

increases with each swing. Then the fuzzy sliding-mode

controller is employed to control the movement that the

acrobot enters the attractive area from the swing-up area.

The model-based fuzzy controller, which is based on a

Takagi-Sugeno fuzzy model is used to balance the acrobot.

The stability of the fuzzy control system for balance

control is guaranteed by a common symmetric positive

matrix, which satisfies linear matrix inequalities.

1. Introduction
The acrobot is a two-link manipulator operating in a

vertical plane with an actuator at the elbow but no actuator

at the shoulder. It is a good example of an underactuated

mechanical system, which possesses fewer actuators than

the degrees of freedom [1].

Motion control of an acrobot has been studied for years.

For example, [2] has investigated the problem of

balancing an acrobot at the unstable straight-up position

using nonlinear approximation. In [3, 4], Spong has

described a partial feedback linearization method to swing

an acrobot up and has used the linear quadratic regulator

(LQR) method to balance it. However, the upswing

control law was chosen based on the condition under

which the energy of a single link increases. So

theoretically, it did not guarantee the energy of the acrobot

increased with each swing. In addition, the capture of the

acrobot is very difficult and the LQR balancing control

law[3, 4] makes the region for balance control very small.

This paper proposes a control strategy that employs a

model-free fuzzy control, a fuzzy sliding-mode control

and a model-based fuzzy control. In the swing-up process,

the control law for the torque is derived directly from the

energy of the acrobot, and the model-free fuzzy controller

regulates the amplitude of the control torque according to

the energy. The key point is to choose a control torque that

guarantees that the energy of the acrobot increases with

each swing. This is quite different from the method

proposed in [4]. Then the fuzzy sliding-mode controller is

employed to control the second link of the acrobot. This

control law drives the angle of the second link towards

zero, and maintains the energy of the acrobot almost

unchanged. This strategy ensures that the acrobot enters

the attractive area quickly, and overcomes the difficulty of

the capture of the acrobot in the swing-up area. It

guarantees that the acrobot enters the attractive area very

fast and easily. In the balancing process, a Takagi-Sugeno

fuzzy model is constructed to approximate the dynamics

of the acrobot. The model-based fuzzy controller, which

uses the Takagi-Sugeno fuzzy model, employs the concept

of parallel distributed compensation. The stability of the

fuzzy control system for balance control is guaranteed by

a common symmetric positive matrix, which satisfies

linear matrix inequalities (LMIs). Since the Takagi-

Sugeno fuzzy model describes the acrobot with a

satisfactory approximated precision over a large region,

the model-based fuzzy balancing control law makes the

attractive area larger than it is with LQR.
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2. Dynamics of the acrobot

Consider the acrobot shown in Figure 1. Its dynamic

equations are

m q m q c g11 1 12 2 1 1 0( )&& ( )&& ( , & ) ( )q q q q q+ + + = , (1a)

m q m q c g21 1 22 2 2 2( )&& ( )&& ( , & ) ( )q q q q q+ + + = τ , (1b)

where

q = q q
T

1 2 ,

m m L I m L I m L m L L qg g g11 1 1
2

1 2 2
2

2 2 1
2

2 1 2 22( ) cos ,q = + + + + +

  m m L Ig22 2 2
2

2( )q = + ,

m m m L I m L L qg g12 21 2 2
2

2 2 1 2 2( ) ( ) cosq q= = + + ,

c m L L q q q qg1 2 1 2 2 1 2 22( , & ) & ( & & ) sinq q = − + ,

c m L L q qg2 2 1 2 1
2

2( , & ) & sinq q = ,

g m L m L g q m L g q qg g1 1 1 2 1 1 2 2 1 2( ) ( ) sin sin( ),q = − + − +

g m L g q qg2 2 2 1 2( ) sin( )q = − + .

For the link i (i=1,2), the parameters q q m L Li i i i gi,  ,    & , ,  and

Ii  are the angle, the angular velocity, the mass, the link

length, the center of mass, and the moment of inertia,

respectively. The inertia matrix M( )q  is

M( )
( ) ( )
( ) ( )

q
q q
q q

= LNM
O
QP

m m
m m

11 12

21 22

 ,  (2)

Figure 1. Model of the acrobot.

In this paper, the motion space of the acrobot is divided

into two subspaces[5]: one is the attractive area in the

neighborhood of the unstable straight-up equilibrium

position, and the remainder is the swing-up area. Two
small positive numbers, λ1  and λ 2 , are used to define

the two subspaces.

Swing-up area: q1 1> λ  and q q1 2 2+ > λ , (3)

Attractive area: q1 1≤ λ  or q q1 2 2+ ≤ λ . (4)

3. Control in the swing-up area
In the swing-up area, the motion control of the acrobot

includes two phases. In the first phase, the control torque

is derived directly from the energy of the acrobot. A

model-free fuzzy controller is designed to regulate its

amplitude of the control torque according to the energy. It

is employed until the energy reaches the amount that the

acrobot has at the unstable straight-up equilibrium

position. In the second phase, a fuzzy sliding-mode

controller is employed to control the second link. It drives

the angle of the second link towards zero, and maintains

the energy almost unchanged. This strategy ensures that

the acrobot enters the attractive area quickly, and

overcomes the difficulty of the capture of the acrobot in

the swing-up area.

3.1.Design of model-free fuzzy controller

  The energy of the acrobot is given by

E T V( , & ) ( , & ) ( )q q q q q  ,= + (5)

where T( , & )q q  is the kinetic energy and V ( )q  is the

potential energy, both of which are expressed in

generalized coordinates. They are defined as follows:

T T( , & ) & ( ) & ,q q q q q =
1

2
M (6)

V V m ghi i i

ii

( ) ( ) ( ),q q q= =
==
∑∑

1

2

1

2

(7)

where V qi ( ) and h qi ( ) are the potential energy and the

height of the center of mass of the ith link, respectively.

  During an upswing, the energy of the acrobot should

increase continuously until it reaches the amount that the

acrobot has at the unstable straight-up equilibrium

position. This means that the derivation of the energy

should satisfy the following condition in the swing-up

area.
& ( , & )E q q ≥ 0 . (8)

  Differentiating (5) and (6) to q q and & , (7) to q

respectively, and rewriting the dynamic equation (1) yield

  & ( , & ) &E qq q = 2τ . (9)

  So, the control torque for swing-up is chosen to be

  τ υ= sgn( & )q2 ,  υ ≥ 0 (10)

to satisfy (8).

The control variable  υ in (10) can be chosen arbitrarily

in the admissible range of the control torque as long as it

actuated joint

passive joint

q
1
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is positive. Clearly, the amplitude of the control torque

should be chosen so that it decreases as the energy

increases. That makes the acrobot can work smoothly

when the control law changes. To implement this strategy,

a model-free fuzzy controller is designed to determine the

control variable υ.

A basic fuzzy control method[6] is used to design the

model-free fuzzy controller. The input of the model-free

fuzzy controller is the energy E( , & )q q  and the fuzzy

output variable is υ x . The fuzzy relation between the

energy E( , & )q q  and the fuzzy output variable υ x is the

set of simple fuzzy rules as following

If E( , & )q q  is small, Then υ x  is large;

If E( , & )q q  is medium, Then υ x  is medium;

If E( , & )q q  is large, Then υ x  is small.

The membership functions (mfs) for fuzzy input/output

linguistic variables are chosen to have the triangular

shapes. The crisp output, υ , is obtained by applying the

center-of-gravity defuzzification method to the fuzzy

output variable υ x . The model-free fuzzy controller is

employed until the energy reaches the amount that the

acrobot has at the unstable straight-up equilibrium

position. Then the fuzzy sliding-mode controller is applied

to control the angle of the second link towards zero, and

maintains the energy unchanged.

3.2.Design of fuzzy sliding-mode controller

Dynamic equations (1) and (2) can be rewritten as

&x x1 3= , (11a)

&x x2 4= , (11b)

& ( ) ( )x f b3 1 1= +x x τ , (11c)

& ( ) ( )x f b4 2 2= +x x τ , (11d)

where x = =x x x x q q q q
T T

1 2 3 4 1 2 1 2& &  is the state

vector, f1( )x , b1( )x , f2 ( )x  and b2 ( )x are nonlinear

functions.

  The sliding function is defined as

s cx x= +2 4 , c > 0 , (12)

the sliding surface is

cx x2 4 0+ = . (13)

  Choosing a lyapunov function

V s=
1

2
2 . (14)

  From the lyapunov stability theorem, if &V  is negative,

the states of the second link, x2  and x4 , will be driven

and attracted towards the sliding surface and remain

sliding on it until the states of the second link

asymptotically converge to zeroes. From (12) and (14),

the following expression is obtained
& [ ( ) ( ) ]V s cx f b= + +4 2 2x x τ . (15)

  Satisfy &V  being negative, the control torque is chosen
as

τ τ= −~ sgn( ( ))K sb2 x , K ≥ 0 , (16)

where K must be properly chosen, and

~ ( )

( )
τ =

− −cx f

b
4 2

2

x

x
. (17)

  The controller will have high frequency switching

chattering near the sliding surface due to signum function

involved. These drastic changes of input can be avoided

by introducing a boundary layer with width Φ . Thus,

replacing sgn( ( ))sb x  with sat( ( ) / )sb x Φ , the law of the

sliding mode control is

τ τ= −~ sat( ( ) / )K sb2 x Φ , (18)

where

sat( ( ) / )
sgn( ( ) / ) ( ) /

( ) / ( ) /
sb

sb sb

sb sb2
2 2

2 2

1

1
x

x x

x x
Φ

Φ Φ
Φ Φ

=
≥
<

RST
if  

if  
. (19)

  Substituting (18) into (9) yields
& ( , &) & ~ & sat( ( ) / )E q q q Kq sb = −2 2 2τ x Φ , (20)

& ( & )E q,  q  is not always equal to zero, which means that the

energy changes when the sliding mode control is

employed.

  Maintaining the energy unchanged, K is chosen as

K = +β ρ( )1 ,  β ρ> − < <0 1 1,   . (21)

Two fuzzy controllers are designed according to

y q sb= − ≥& sat( ( ) / )2 2 0x Φ  and y < 0  to regulate the

parameter K. Two inputs of the fuzzy controller are the

energy change

e T V E= + −( & ) ( )q,  q q (22)

and the signal w (where w q= & ~
2τ ), respectively, and the

output is ′ρ , where E is the amount of the energy that the

acrobot has at the unstable equilibrium position.

  The fuzzy relations between the inputs and output are

listed in Table 1 and 2, where NB is negative big, NM is

negative medium, ZR is zero, PM is positive medium, and

PB is positive big. The fuzzy rules are equivalent to
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Rule l: IF  is  and  is ,  THEN   is ,e F w F Fe
l

w
l l~ ~ ~′ ′ρ ρ

l r= 1, , 2,   K ,  (23)

where r is the number of IF-THEN rules. 
~
Fe

l , 
~
Fw

l  and
~
F l
ρ  are the fuzzy sets of e , w  and ′ρ , respectively.

Table 1 Fuzzy control rules y ≥ 0

NB NM ZR PM PB

NB PB PB PB PM ZR

NM PB PB PM ZR NM

ZR PB PM ZR NM NB

PM PM ZR NM NB NB

PB ZR NM NB NB NB

Table 2 Fuzzy control rules y < 0

NB NM ZR PM PB

NB NB NB NB NM ZR

NM NB NB NM ZR PM

ZR NB NM ZR PM PB

PM NM ZR PM PB PB

PB ZR PM PB PB PB

Both of the fuzzy controllers use the (Product, Product,

Maxim, Center of Gravity) fuzzy operation.

  The compositional degree ω l  of the fuzzy control

premise condition is

ω µ µl F Fe
l

w
le w= ∗~ ~( ) ( ) . (24)

The inference result of the lth fuzzy rule is

µ ζ ω µ ζ
ρ ρ

~ ~( ) ( )
F l F l

′ ′
= ∗ , (25)

where µ ~ ( )
Fe

l e , µ ~ ( )
Fw

l w  and µ ζ
ρ

~ ( )
F l

′
 are the membership

functions of the fuzzy sets ~
Fe

l , ~
Fw

l  and ~
F l

′ρ , respectively,

∗  is the Product.

  The compositional inference consequence of all rules is

µ ζ ω µ ζ
ρ ρ

~ ~( ) ( )
F l

l F l= ∨ ∗
= ′1

25

. (26)

  The crisp output ρ  is obtained by the center-of-gravity

defuzzifier

ρ
µ ρ ρ ρ

µ ρ ρ

ρ

ρ

=
′ ′ ′

′ ′

′

′

z
z

~

~

( )

( )

F

F

d

d
. (27)

The amplitude of & ( , & )E q q  is regulated by the output ρ
of the fuzzy control. This method is used to maintain the

energy unchanged until the acrobot enters the attractive

area.

4. Control in the attractive area
The attractive area is defined in (5). Its dynamics in this

area is nonlinear, and a linear approximate model around

the unstable straight-up equilibrium position is usually

used for control. However, linearizing it by using only the

position makes the attractive area very small. To achieve

better control, the model in this area needs to be described

more precisely.

Takagi and Sugeno have introduced model-based

analytical method into fuzzy control [7]. This method gives

us a more suitable way to describe the nonlinearity in the

attractive area. The dynamic in the attractive area is

captured by a set of fuzzy implications that characterize

local relations. Then, a set of local controllers is designed

based on the models using the parallel distributed

compensation method. Finally, the fuzzy controller

obtained by fuzzy blending of the local controllers is used

to balance it. The stability of the fuzzy control system for

balance control is guaranteed if a common symmetric

positive definite matrix can be found for all local linear

models.

4.1. Takagi-Sugeno fuzzy model

The Takagi-Sugeno fuzzy system is given by

Rule 1: If z is larger than c1 , Then &x A x B1 1= + τ ,

Rule 2: If z is smaller than c2  , Then &x A x B2 2= + τ ,

where z q q= 1 2/ , c1  and c2  are constants, and

c c1 2 0> > .

It is clear that two linear models are used to describe

the acrobot. In Rule 1, the acrobot is linearized with the

coordinate xd =     [ ]0 0 0δ T; and in Rule 2, it is linearized

with the coordinate xq = [ ]0 0 0   θ  T (where θ δ> ≥ 0 ).

In the attractive area, q1 1 1   ∈ −[ , ]λ λ  and q q1 2+ ∈

[ , ]−λ λ2 2 . Since λ1 and λ 2  are very small, sin q1 and

w e

w e
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sin( )q q1 2+  can be approximated by q1 and q q1 2+ ,

respectively. According to equation (1) and (2), the linear

approxi- mate model for the coordinate xφ φ= [ ]0 0 0   T

(where x x xφ δ θ=  or ) is as follows:
& ( ) ( )x A x B= +φ φ τ , (28a)

where

A B( ) ( ) ( )
( ) ( )

; ( ) ( )
( )

,φ φ φ
φ φ

φ φ
φ

=

L

N

MMM

O

Q

PPP
=

L

N

MMM

O

Q

PPP

0 0 1 0
0 0 0 1

0 0
0 0

0
0

31 32

41 42

3

4

a a
a a

b
b

 (28b)

q
T

φ φ= 0 ,

a a b
a a b

q

M q
41 42 4

31 32 3

1
0

( ) ( ) ( )
( ) ( ) ( )

( )

det ( )

φ φ φ
φ φ φ

β β
α β β

φ

φ

   
   

           
    

−
− −
L
NM

O
QP =

−
+ −
L
NM

O
QP

M
,

α = − +( )m L m L gg1 1 2 1 ,  β = −m L gg2 2 .

Substituting the coordinates xδ  and xθ  into (28b)

yields the following two local linear models ( , )A B1 1 

= ( ( ), ( ))A Bδ δ  and ( , )A B2 2 = ( ( ), ( ))A Bθ θ , respectively.

So, the dynamics of the approximate fuzzy model is

represented by

& ( )( ) / ( )x z A x B zj j j
j j

j
= +

= =
∑ ∑µ τ µ

1

2

1

2

 , (29)

where µ1( )z  and µ 2 ( )z  are the membership functions

for Rules 1 and 2, respectively. They are defined as

µ
π

1

2

1 2

1 2
2 1

1

0 0

1

2

1

2 2

1

( )

;

sin ( );

;

z

z c

c c
z

c c
c z c

z c

=

≤ ≤

+
−

−
+

< ≤

R
S
||

T
||

                                             

 

                                               >

(30a)

µ µ2 11( ) ( )z z= − . (30b)

4.2. Design of model-based fuzzy controller

  The concept of parallel distributed compensation ([14])

is utilized to design local controllers. The basic idea is to

design a corresponding controller for each local linear

model. This paper employs the pole assignment approach

to design the local controllers. The full state is assumed to

be available and the design results are given by

Rule 1: If z is larger than c1  Then τ = −F x1 ,

Rule 2 If z is smaller than c2  Then τ = −F x2 .

  Finally, the resulting overall fuzzy controller obtained

by the fuzzy blending of the individual linear controllers is

τ µ µ= −
= =
∑ ∑j j
j

j
j

z F x z( ) / ( )
1

2

1

2

. (31)

  This is used to balance the acrobot. Controller (31) is

nonlinear in general. It is clear that the parallel distributed

compensation method employs two controllers with

automatic switching via fuzzy rules.

Substituting (31) into (29) yields the following fuzzy

control system:

&

( ) ( )( )

( ) ( )

x

x

=

−
==

==

∑∑

∑∑

µ µ

µ µ

j

k

k j j k

j

j

k

k

j

z z A B F

z z

1

2

1

2

1

2

1

2
. (32)

To guarantee stability, the result in [8] was applied to

the fuzzy control system (32), and the following sufficient

condition for stability was obtained.

Theorem 1: The fuzzy control system (32) is

asymptotically stable at the unstable straight-up

equilibrium position if there exists a common symmetric

positive definite matrix P such that the following LMIs

hold:

( ) ( ) ,A B F P P A B Fj j k
T

j j k− + − < 0   j, k = 1, 2 (33)

It is known that finding the matrix P is a convex

feasibility problem. Now, this problem can be solved

efficiently by using LMImethod[9] .

5. SIMULATION
The parameters of the acrobot are given as m1=1kg,

L1=1m, Lg1=0.5m, I1=0.083Nm2, m2=1kg, L2=2m, Lg2=1m

and I2=0.33Nm2. λ λ π1 2 4= = / (rad/s) is used to divide

the motion space. The parameters of the are c=2, k=1,

E=24.5 J, Φ =15, c1 =4, c2 =0.1, δ =0 (rad/s) and

θ π= / 4 (rad/s).

For the attractive area, substituting the parameters into
(16b) yields two local linear models: ( , )A B1 1  and

( , )A B2 2 . Two local controllers are designed by applying

the method of parallel distributed compensation to
( , )A B1 1  and ( , )A B2 2 . The local feedback gains F1 and

F2  are determined by selecting (-2, –2.2, –2.4, –2.6) as the

eigenvalues of the local linear subsystems. The overall

parallel distributed compensation controller is

τ µ µ= − −1 1 2 2( ) ( )z zF x F x . (34)

  A symmetric positive definite matrix P is obtained by

using the LMI algorithm. So, the fuzzy control system is

asymptotically stable for fuzzy control law (24).

Figure 4 shows simulation results for the initial

condition  x( ) [ ]0 0 0 0= π T. When 0 0 54≤ <t .  s , the
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model-free fuzzy controller is used until the energy

reaches E. When 0 54 2 5. .≤ <t  s , the fuzzy sliding-mode

controller is used to move the acrobot into the attractive

area. When t ≥ 2 5.  s , the model-based fuzzy controller is

used for balancing control. The simulation results show

that the response is soft when the control law changes, and

the state converges smoothly to the unstable straight-up

equilibrium position.

6. Conclusions
A control strategy combining model-free fuzzy control,

a fuzzy sliding-mode control and model-based fuzzy

control has been developed for controlling an acrobot. The

model-free fuzzy controller is used for swing-up control.

It is designed to guarantee that the energy of the acrobot

increases with each swing, and the amplitude of the

control torque decreases as the energy increases. A fuzzy

sliding-mode controller is employed to control the second

link. It drives the angle of the second link towards zero,

and maintains the energy almost unchanged. The model-

based fuzzy controller is used for balance control and is

designed by combining the Takagi-Sugeno fuzzy model

with the method of parallel distributed compensation. The

stability of the fuzzy control system for balance control is

guaranteed by a common symmetric positive matrix.

Simulation results have demonstrated the validity of the

method. This strategy ensures that the acrobot enters the

attractive area quickly, and overcomes the difficulty of the

capture of the acrobot in the swing-up ares. It guarantees

that the acrobot enters the attractive area very fast.
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Figure 4. Simulation results.




