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Abstract: This paper concerns a real-world application of an expert system to the
automation of a zinc hydrometallurgy plant. The leaching process in zinc hydrometallurgy
involves dissolving zinc-bearing material in dilute sulfuric acid to form a zinc sulfate
solution. The key problems are to determine and track the optimal pHs of the overflows
from the neutral and acid leaches, and to ensure the safe running of the process. This paper
describes an expert control and fault diagnosis scheme that solves those problems. The
expert control is based on a combination of steady-state mathematical models and rule
models, and the fault diagnosis employs rule models with certainty factors and a Bayes
representation. A real-world application of this scheme showed that it not only improved
the control performance, but also correctly diagnosed faults. Copyright   2000 IFAC
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 1. INTRODUCTION

  
Leaching, purification and electrolysis are the three
basic processes in zinc hydrometallurgy. Leaching,
which is the first process, involves complex chemical
reactions for dissolving zinc-bearing material in
dilute sulfuric acid to form a zinc sulfate solution
(Mathewson, 1959; Zhuzhou Smeltery, 1973). To
obtain high-purity metallic zinc and reduce costs, the
composition of the zinc sulfate solution must meet
the given standards, and as much of the soluble zinc
in zinc-bearing material must be dissolved as possible.
On the other hand, because even a small fault in the
leaching equipment may lead to changes in flow rates
and temperatures, which can be quite hazardous, it is
important to limit the influence of faults that occur
and ensure that the process runs safety. This requires
a method not only of effective control, but also of
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fault diagnosis for the leaching process.
   Conventional methods are mainly based on
manual operation and mathematical models. It is
difficult to obtain the desired performance by such
methods because of the complexity of the chemical
reactions involved. The field of expert systems is
growing rapidly, and its extensive application to
engineering problems has provided effective means
of process control and fault diagnosis (Efstathiou,
1989; The Society of Chemical Engineers, 1993;
Yamaguti 1987; Patton, Frank & Clark, 1989). Expert
systems use the empirical knowledge of human
experts in a specific domain to solve a problem. They
have recently been applied in the control of a
hydrometallurgical zinc process, and distributed and
model-based expert control techniques have been
developed that achieve the control objectives of high
quality and low costs (Wu, Nakano & She, 1998;
1999a). More specifically, an expert control strategy
using neural networks was developed to control the
electrolytic process, and the real-world application of
that strategy showed that using neural networks can
significantly improve control performance (Wu,
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Nakano & She, 1999b). However, that system did not
include any fault diagnosis.
   This paper concerns a combination of expert
control and fault diagnosis for the leaching process.
Empirical knowledge and data on the process show
that the key control problems in the control are to
determine and track the optimal pHs of the overflows
of the neutral and acid leaches, and that the key fault
diagnosis problem is to provide information about the
cause and location of any fault that occurs as well as
the appropriate countermeasure. The optimal pHs
mentioned here mean that the composition of the zinc
sulfate solution obtained meet the given standards,
and as much of the soluble zinc in zinc-bearing
material is dissolved as possible. This paper describes
an expert control and fault diagnosis scheme based on
the model-based expert technique developed by Wu,
Nakano & She, 1999a, to improve control
performance and ensure safe operation. The scheme
employs an expert controller to determine the optimal
pHs and a fault diagnosis module that performs on-
line and off-line fault diagnosis. It is based on a
combination of steady-state mathematical models and
rule models for expert control, and rule models with
certainty factors and a Bayes representation for fault
diagnosis. The models are constructed from empirical
knowledge, statistical data and chemical reactions for
the process. A conventional single-loop control
technique provides tracking control to the optimal
pHs. This paper mainly describes the scheme and a
real-world application.

  
2. BASIC SCHEME

  
The leaching process considered in this paper is
shown in Fig. 1. It uses neutral and acid continuous-
leach technology, and consists of one series of neutral
leaches and two identical series of acid leaches

Fig. 1. Leaching process.

(Zhuzhou Smeltery, 1973). Each series has four tanks
and a thickener.
   The zinc-bearing material is delivered to a
flotation cell and mixed with an oxidized iron
solution and spent electrolyte containing sulfuric acid
that is returned from the electrolytic process. The
solution is delivered to four water-powered classifiers.
The overflow is pumped to the 1st neutral leach tank,
and the underflow is milled by four ball mills and
pumped to the 1st tank of each acid leach series. The
spent electrolyte is also added to the neutral and acid
leaches. The chemical reactions are carried out in the
tanks. The solution is then sent to thickeners to settle.
The overflow from the neutral leach is sent to the
purification process in the form of a neutral zinc
sulfate solution, and the underflow is added to the 1st
tank of each acid leach series. The overflows from
the acid leaches are pumped to the 1st tank of the
neutral leach, and the residues are sent to the residue
treatment process.
   An expert control and fault diagnosis scheme
based on the hierarchical configuration shown in Fig.
2 was derived to solve the key problems in the
control and fault diagnosis of the leaching process.
The scheme employs an expert controller,  three
single-loop controllers, a fault diagnosis module and
measurement equipment. The pHs of the overflows of
the neutral and acid leaches are adjusted by adding
spent electrolyte to the leaches. The expert controller
employs a reasoning strategy that combines steady-
state mathematical models and rule models of the
process and uses forward chaining and model-based
chaining to determine the optimal pHs, and computes
the target flow rates of the spent electrolyte that
correspond to the optimal pHs, so that the
composition of the neutral zinc sulfate solution meets
the given standards, and as much of the soluble zinc
in the zinc-bearing material is dissolved as possible.
The single-loop controllers track the target flow rates
by means of PI control algorithms to ensure that the
actual pHs match the optimal values. The fault
diagnosis module uses an expert reasoning strategy
based on rule models with certainty factors and a
Bayes representation, and combines forward and
backward chaining to perform on-line and off-line
fault diagnosis, so as to ensure safe operation. The
measurement equipment is used for the on-line
measurement of process parameters for fault
diagnosis.
  

Fig. 2. Hierarchical configuration.
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3. DESIGN OF EXPERT CONTROLLER
  
The design of the expert controller is based on the
model-based expert technique developed by Wu,
Nakano & She, 1999a. The controller determines the
optimal pHs by means of rule models, computes the
target flow rates through a combination of steady-
state mathematical models and rule models.
  

3.1 Determining the optimal pHs
  
Empirical knowledge and data revealed that the
optimal pHs are mainly related to the following
factors: the composition and particle size of the zinc-
bearing material, the temperature of the solution, and
the concentrations of zinc and impurities in the
overflows from the neutral and acid leaches.
However, it is difficult to express the exact
relationships among the optimal pHs and these
factors by mathematical models alone.

To obtain the optimal pHs, production rule
models of the If-Then form (Efstathiou, 1989) are
used and assigned numbers like R# .

The If part contains the zinc content ( fc) on a
scale of 1 to 10 and the particle size ( fps ) on a scale
of 1 to 8 of the zinc-bearing material, the temperature
of the solution ( f t = high, medium or low), and the
concentrations of zinc and impurities in the overflows
from the neutral and acid leaches. The Then part
contains instructions to select and adjust the initial
and optimal pHs.

The optimal pHs are determined in two steps. The
first is to select the initial pHs based on f c , fps  and
f t . The second is to adjust the initial and optimal

pHs based on the concentrations of zinc and
impurities. The rule models for determining the
optimal pHs are constructed based on those two steps
and empirical knowledge and data on the process.
Some typical rule models for the neutral leach are
shown in Table 1.

In Table 1, f Ncz  and f Nci  denote the
concentrations levels (large, medium or small) of zinc
and impurities, respectively, in the overflow from the
neutral leach; CNopt  is the optimal pH of the
overflow from the neutral leach; CN  is the initial
value of CNopt ; and CN m84 , CN h101 , CN l18 ,
∆CNzl  and ∆CNil  are empirically determined values.

Table 1. Some rule models for determining optimal pHs.

REC1: If  fc = 8  and f ps = 4  and ft = medium
     Then  C CN N m= 84

REC2: If  fc = 10  and f ps = 1  and ft = high
     Then  C CN N h= 101

REC3: If  fc = 1  and f ps = 8  and ft = low
     Then  C CN N l= 18

REC4: If  f Ncz = large  Then C C CNopt N Nzl= − ∆
REC5: If  f Nci = large  Then C C CNopt Nopt Nil= + ∆

The rule models for the acid leaches are similar to
those for the neutral leach. The following algorithm
determines the optimal pHs.

Step 1:  Compute f c , fps  and f t  from the zinc
content and particle size of the zinc-bearing material,
and the temperature of the solution, respectively.

Step 2:  Determine the initial pHs, such as CN ,
by rule models REC1 - REC3.

Step 3:  Compute the concentration levels of zinc
and impurities in the overflows ( f Ncz  and f Nci ).

Step 4:  Determine the optimal pHs, such as
CNopt ,  by rule models such as REC4 - REC5.

  
3.2. Computing the target flow rates
  
Leaching can be considered to be a steady-state
chemical process because it is generally run within a
specific operating range. Based on this supposition,
the target flow rates corresponding to the optimal pHs
are computed  by a combination of steady-state
mathematical models and rule models describing the
process.

The chemical reactions occur mainly in the leach
tanks. The steady-state mathematical models are
based on the assumptions that the zinc-bearing
material and the solution in the tanks are agitated and
completely mixed, and that the temperature of the
solution is uniform. The mass balance principle (e.g.
Inugita & Nakanishi, 1987) yields the following
dynamic balance equation for the sulfuric acid in the
neutral leach.
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where xNh , xCh  and xiAh  are the concentrations of
sulfuric acid in the solution after the neutral leach, the
classifiers and the ith acid leach series, respectively;
xNhe  is the concentration of sulfuric acid in the spent
electrolyte added to the neutral leach; FCo  and FiAo
are the flow rates of the overflows from the
classifiers and the ith acid leach series, respectively;
FNe  is the flow rate of the spent electrolyte added to
the neutral leach; VN  is the total volume of the
neutral leach tanks; ε N  is the ratio of liquid to solid
in the solution in the neutral leach; and rNh  is the
reaction rate of sulfuric acid.

For steady-state operation, rNh  is the steady-state
reaction rate. Let f Nzo  denote the steady-state
particle reaction rate of zinc oxide with sulfuric acid.
The principle of steady-state mass balance for the
zinc oxide in the neutral leach and a simple
calculation yield
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kCo  is the ratio of liquid to solid in the overflow
from the classifiers; MH SO2 4

 and MZnO  are the
molecular weights of zinc oxide and sulfuric acid,
respectively; ηCzo  is the zinc oxide content of the
zinc-bearing material; and µCzb  is the specific
gravity of the zinc-bearing material.
   f Nzo  can be estimated based on the experience of
experts and operators and accumulated empirical
knowledge  on  the neutral leach process.  This
estimate is denoted by f Nzo .
   Let xNh

g  denote the target concentrations of
sulfuric acid in the solution after the neutral leach,
which corresponds to the optimal pH. From empirical
knowledge, the target flow rates F kNe

g ( )  of the spent
electrolyte added to the neutral leach during the kth
period are given by
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where α N k( )  and β N l( )  are empirical
coefficients determined from empirical knowledge.

The rule models for determining f Nzo , α N k( )
and β N l( ) are constructed by a method similar to
those for the optimal pHs.

The following algorithm computes the target flow
rate corresponding to the optimal pH for the neutral
leach.

Step 1:  Select f Nzo , α N k( )  and β N l( )  based
on f c , f ps  and f t  as well as the concentrations of
sulfuric acid in the overflow of the neutral leach and
in the solutions added to the neutral leach by rule
models.

Step 2:  Obtain x kNhe ( ) , x kCh ( ) , x kiAh ( ) ,
k kCo ( ) , F kCo ( )  and F kiAo ( )  from the measure-
ment equipment.

Step 3:  Compute xNh
g  corresponding to the

optimal pH, and K kNh ( )  based on process data.
Step 4:  Compute the target flow rate F kNe

g ( )
from steady-state mathematical model (4). If the

value is outside the allowable range, it is set to an
allowable value by firing suitable rule models.

An algorithm similar to the one of the neutral
leach computes the target flow rates for the acid
leaches.
  

3.3. Structure of expert controller
  
The expert controller consists of a characteristics-
capturing mechanism, a database, a knowledge base,
an inference engine, and a user interface.

The characteristics-capturing mechanism captures
the characteristics of the process data from the
measurement equipment and the three single-loop
controllers. These characteristics are matched up with
the conditional parts of rule models. The partial
process data are on line measured such as the flow
rates of the spent electrolyte, zinc-bearing material,
oxidized iron solution, and the overflows and
underflows of the classifiers, leach tanks and
thickeners; the temperatures of the solutions in the
neutral and acid leaches; and the pHs of the
overflows and underflows of the classifiers, leach
tanks and thickeners, by the E+H electromagnetic
flow meters, temperatures meters, and industrial pH
meters, etc.

They are stored in the database, which also holds
the quality requirements for the neutral zinc sulfate
solution, measured and statistical data on the process,
reasoning results from the inference engine, etc.

The knowledge base stores the rule models,
steady-state mathematical models, empirical data,
calculation laws, etc.

The inference engine acquires data from the
database, and then uses both the knowledge in the
knowledge base and a reasoning strategy that
combines forward chaining (Efstathiou, 1989) and
model-based reasoning (Ishizuka & Kobayashi, 1991)
to determine the optimal pHs and compute target
flow rates. The target flow rates are sent to the single-
loop controllers.

The user interface is used to configure and edit
the knowledge base, and to display and print data,
graphs, reasoning results, etc.
  

4. DESIGN OF FAULT DIAGNOSIS MODULE
  
The structure of the fault diagnosis module is similar
to that of the expert controller. The knowledge base
stores the rule models and Bayes representation for
fault diagnosis, the causes and locations of faults and
associated actions to be taken, etc. The data input by
operators are also stored in the database. The
inference engine uses forward chaining and backward
chaining to perform fault diagnosis. The user
interface gives off fault alarms and is used to send
commands to the expert controller to correct faults.
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4.1. Fault diagnosis procedure
  
The main functions of fault diagnosis mainly are to
detect and diagnose faults in important equipment,
such as the leach tanks, pumps, etc., and to indicate
the causes and locations of faults as well as suitable
countermeasures. The fault diagnosis module is
designed to provide support for the safe running of
the process. It monitors the process in real time to
detect the unusual states, such as excessive flow rates
or temperatures and pHs that are too low, etc. In
addition, it also accepts fault facts and data input by
operators. Based on unusual states and fault facts and
data, the module performs on-line or off-line fault
diagnosis. Then it outputs the diagnostic results,
which indicate the cause and location of the fault as
well as the suitable actions to be taken.

The module uses rule models with certainty
factors and a Bayes representation, and combines
forward chaining and backward chaining. The
procedure is as follows:

Step 1:  Obtain data on the process from the
measurement equipment and the expert controller to
capture any unusual process states, and accept fault
facts and data input by operators through the user
interface.

Step 2:  Store the unusual states and fault facts
and data in the database.

Step 3:  Based on data in the database, select
either a fault mode for on-line fault diagnosis using
rule models in the knowledge base and a forward
chaining strategy, or possible fault modes for off-line
fault diagnosis using a Bayes representation.

Step 4:  For off-line fault diagnosis, select one of
the possible fault modes using a backward chaining
strategy.

Step 5:  Display the reasoning results with
certainty factors on the screen, and/or give off an
alarm through a bell and lights.

Based on the diagnosis, the operators find the
cause and location of the fault by checking the site,
and take suitable countermeasures to correct the fault.
According to type of the fault, operators can also
send commands through the user interface to the
expert controller to correct it.
  

4.2. Rule models for fault diagnosis
  
An important aspect of the design of the fault
diagnosis module is the construction of rule models,
which are based on the empirical knowledge of
engineers and operators as well as on empirical data
and statistical results on past fault countermeasures.
The construction procedure contains four steps.

Step 1:  Collect all unusual states that are useful
for fault diagnosis. The unusual states are mainly
collected through on-line measurement and off-line
data input, and also concern the current states of the

flow regulation valves and pumps. Unusual states are
generally represented by +1 (above the allowable
range) and −1 (below the allowable range), but for
flow valves and pumps they are represented by +1
(closed for a valve and stopped for a pump).

Step 2:  Establish fault modes using the fault tree
analysis method (Yamaguti, 1987; Patton, Frank &
Clark, 1989). The unusual states from the basis for
constructing fault trees, which connect these states to
hypotheses in the middle and fault causes at the top.
Moreover, the fault modes are captured from the
hypotheses. The cause and location of a fault as well
as suitable countermeasures are contained in a fault
mode extracted from empirical knowledge and
statistical data on past fault countermeasures. A name
and a number are assigned  to each fault mode.

Step 3:  Determine the certainty factors that
represent the probability of fault causes. It is
desirable to assign a probability to each fault cause
because there might be several causes for one fault
mode. The probability is given by a certainty factor
that depends on the failure rate of the equipment, and
empirical knowledge and statistical data on past safe
recovery.

Step 4:  Construct the rule models for fault
diagnosis based on the unusual states, fault modes
and certainty factors. Based on the unusual states,
fault modes and certainty factors thus obtained, rule
models for fault diagnosis are represented in the If-
Then form.

Some typical rule models are shown in Table 2,
where the values in parentheses are certainty factors.

4.3. Reasoning strategy for fault diagnosis
  

A two-step forward chaining strategy is used for
on-line fault diagnosis: first, select the fault mode
based on the unusual state; and then extract the cause
and location of the fault and a suitable counter-
measure.

Table 2. Some typical rule models for fault diagnosis.

 RFD1:  If  the underflow from the classifier is −1 and
the overflow from the classifier is +1

    Then  the fault mode is J101 (0.95)
 RFD2:  If  the fault mode is J101
    Then  there is too much residue at the bottom of

the classifier (0.85), or the classifier is
broken (0.10)

 RFD3:  If  the underflow of the neutral leach tank is −1
    Then  the fault mode is Y100 (0.95)
 RFD4:  If  the fault mode is Y100
    Then  there is too much residue at the bottom of

the neutral leach tank (0.60), or the pipe at
the bottom of the neutral leach tank is
blocked (0.20), or the valve is not open far
enough or the valve is broken (0.15)
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A backward chaining strategy is used for off-line
fault diagnosis, which is based on the fault facts and
data input by operators. The inference procedure
contains four steps.

Step 1:  Select possible fault modes from the fault
facts by using a Bayes representation.

Step 2:  Test each fault mode by checking the
data and states of the process.

Step 3:  If the test is successful, the fault mode is
selected, and the cause and location of the fault and a
suitable countermeasure are displayed as reasoning
results on a screen. If not, go to the next step.

Step 4:  See if all possible fault modes have been
tested. If yes, select the most probable fault mode and
display the associated reasoning results. If not, select
the next fault mode and return to step 2.

Assume that all possible fault modes are selected
from among n fault modes. Let Y  and Xi  denote a
fault fact and the ith fault mode; and let P Xi( )  and
P Y Xi( / )  denote the a priori probability of Xi  and

the conditional probability of Y  with respect to Xi ,
respectively. Then, P X Yi( / ) , which is the a
posteriori probability of Xi  with respect to Y , can
be obtained from P Xi( )  and P Y Xi( / )  by using a
Bayes representation

P Y X
P Y X P X

P Y X P X

i
i i

j j

j

n
( / )

( / ) ( )

( / ) ( )

=

=
∑

1

      (5)

The possible fault modes are the ones that
satisfy P Y Xi( / ) ≥ β , where β  is an empirical
coefficient. P Xi( )  and P Y Xi( / )  are determined
from the failure rates of the equipment, and empirical
knowledge and statistical data on past safe recovery.

  
5. REAL-WORLD APPLICATION

  
The designed expert control and fault diagnosis
scheme was used in the leaching process of a
nonferrous metals smeltery.

The optimal pHs and the corresponding target
flow rates were determined by the expert controller,
and the target flow rates were tracked by the single-
loop controllers. The results show that the pHs are
kept in the optimal ranges of 4.8-5.2 for the neutral
leach and 2.5-3.0 for the acid leaches, and that the
concentrations of zinc and the major impurities (Cu,
Cd and Co) in the neutral zinc sulfate solution meet
the given standards. More specifically, the
concentration of zinc is kept in the range of 140-170
g/l, and that of Cu, Cd and Co are less than 450 mg/l,
1000 mg/l and 25 mg/l, respectively, which means
that high-purity metallic zinc is obtained. Statistical
data shows that costs are considerably lower.
Compared with conventional control, the leach rate of
the zinc-bearing material is much higher, and the
consumption of zinc-bearing material is dramatically
lower. This means that much more of the soluble zinc

in the zinc-bearing material is dissolved.
Regarding fault diagnosis, actual runs show that

the percentage of hits is over 90% for on-line
diagnosis and over 95% for off-line diagnosis. Fault
diagnosis reduces the frequency of occurrence of
actual faults to quite a low level because it pinpoints
the cause and location of faults and suitable
countermeasures are taken before the fault occurs.

  
6. CONCLUSSIONS

  
This paper has described an expert control and fault
diagnosis scheme for the leaching. Expert control
involves determining the optimal pHs and the
corresponding target flow rates, and is implemented
in an expert controller based on a combination of
steady-state mathematical models, rule models,
forward chaining and model-based chaining, and the
tracking of target flow rates, which is achieved by
means of conventional single-loop controllers. Fault
diagnosis ensures the safe running of the process, and
is performed by a fault diagnosis module that
employs rule models with certainty factors, a Bayes
representation, forward chaining and backward
chaining. A real-world application demonstrates the
effectiveness of the scheme.
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