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Abstract: This paper describes a fuzzy control strategy
for the control of an acrobot. The strategy combines

model-free and model-based fuzzy control. The model-

free fuzzy controller designed for the upswing ensures that

the energy of the acrobot increases with each swing. The

model-based fuzzy controller, which is based on a Takagi-

Sugeno fuzzy model for balancing, employs the concept

of parallel distributed compensation. The stability of the

fuzzy control system for balance control is guaranteed by

a common symmetric positive matrix, which satisfies

linear matrix inequalities.

Key words: acrobot, underactuated mechanical systems,
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1. INTRODUCTION
Underactuated mechanical systems possess fewer

actuators than the degrees of freedom ([8]). This kind of

system can perform complex tasks with a small number of

actuators and has the advantages of being light, cheap,

energy-efficient, and highly reliable. For these reasons,

underactuated mechanical systems have been receiving a

great deal of attention recently. On the other hand, because

of the complexity of their nonlinear dynamics and their

holonomic/nonholonomic behavior, control of this kind of

system is very difficult (e.g., [4] and [6])

An acrobot is a good example of an underactuated

mechanical system. The acrobot considered in this paper

is a two-link manipulator operating in a vertical plane. It

consists of one joint each at the shoulder and elbow with a

single actuator at the elbow. The first link, which is

attached to the passive joint, can rotate freely. The second

link is attached to the actuated joint, where a motor is

mounted to provide a control torque. The control objective

in this study is to swing it up from the stable downward

equilibrium position to the unstable straight-up equilib-

rium position and balance it there.

Spong ([10]-[12]) has described a partial feedback

linearization method to swing an acrobot up and has used

the techniques of pseudolinearization/LQR (linear quad-

ratic regulator) to balance it. The basic swing-up strategy

is to choose an external control to swing the second link

so that the amplitude of the swing of the first link

increases with each swing. However, the upswing control

law was chosen based on the condition under which the

energy of a single link increases. So, theoretically, it did

not guarantee that the energy of the acrobot increased with

each swing. In addition, as pointed out in [11], the LQR

balancing control law makes the attractive area very small.

Lee and Smith ([3]) have described a fuzzy control

method that combines genetic algorithms, dynamic

switching fuzzy systems and meta-rule techniques for the

automatic design and tuning of an acrobot fuzzy control

system. The genetic algorithms utilize PD control results.

They showed that the performance was much better than

that obtainable with PD control. However, this method is

very complicated.

  This paper proposes a fuzzy control strategy that

employs a model-free fuzzy controller to swing the

acrobot up and a model-based fuzzy controller to balance

it. In the swing-up process, the control law for the torque

is derived directly from the energy of the acrobot, and the

model-free fuzzy controller regulates the amplitude of the

control torque according to the energy. The key point is to
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choose a control torque that guarantees that the energy of

the acrobot increases with each swing. This is quite

different from the method proposed in [10]-[12]. The main

feature of this strategy is that the amplitude of the control

torque decreases as the energy increases. Hence, the

acrobot moves into a neighborhood of the unstable

straight-up equilibrium position very smoothly. In the

balancing process, a Takagi-Sugeno fuzzy model is

constructed to approximate the dynamics of the acrobot.

The model-based fuzzy controller, which uses the Takagi-

Sugeno fuzzy model, employs the concept of parallel

distributed compensation. Unlike the method in [3], the

design is simple, and the stability of the fuzzy control

system for balance control is guaranteed by a common

symmetric positive matrix, which satisfies linear matrix

inequalities (LMIs) and is found by a convex optimization

technique. Since the Takagi-Sugeno fuzzy model

describes the acrobot with a satisfactory approximated

precision over a large region, the model-based fuzzy

balancing control law makes the attractive area larger than

it is with LQR.

2. DYNAMICS OF THE ACROBOT
Consider the acrobot shown in Figure 1. Its dynamic

equations are
m q q m q q c q q g q11 1 12 2 1 1 0( )&& ( )&& ( , &) ( )+ + + = , (1a)

m q q m q q c q q g q21 1 22 2 2 2( )&& ( )&& ( , &) ( )+ + + = τ , (1b)

where

q q q
T

= 1 2 ,

m q m L I m L I m L m L L qg g g11 1 1
2

1 2 2
2

2 2 1
2

2 1 2 22( ) cos ,= + + + + +

  m q m L Ig22 2 2
2

2( ) = + ,

m q m q m L I m L L qg g12 21 2 2
2

2 2 1 2 2( ) ( ) cos= = + + ,

c q q m L L q q q qg1 2 1 2 2 1 2 22( , &) & ( & & )sin = − + ,

c q q m L L q qg2 2 1 2 1
2

2( , &) & sin = ,

g q m L m L g q m L g q qg g1 1 1 2 1 1 2 2 1 2( ) ( ) sin sin( ),= − + − +

g q m L g q qg2 2 2 1 2( ) sin( )= − + .

For the link i (i=1,2), the parameters q m L Li i i gi,    , ,  and

Ii  are the angular velocity, the mass, the link length, the

center of mass, and the moment of inertia, respectively.

The inertia matrix M q( ) is

M q
m q m q

m q m q
( )

( ) ( )

( ) ( )
=
L
NM

O
QP

11 12

21 22

 ,  (2)

Figure 1. Model of the acrobot.

which is symmetric and positive definite.

The acrobot has the following characteristics:

1) It is second-order nonholonomic.

2) It cannot be exactly linearized in the time domain.

Remark: Characteristic 1 is direct result of Proposition

2.1 and 2.2 in [8]. Characteristic 2 can easily be derived

from Lemma 2.5 in [1].

In this paper, the motion space of the acrobot is divided

into two subspaces ([9]): one is the attractive area in the

neigh-borhood of the unstable straight-up equilibrium

position, and the remainder is the swing-up area. Two
small positive numbers, λ1  and λ 2 , are used to define

the two subspaces.

Swing-up area: q1 1> λ  or q q1 2 2+ > λ , (3)

Attractive area: q1 1≤ λ  and q q1 2 2+ ≤ λ . (4)

3. CONTROL IN THE SWING-UP AREA
In the swing-up area, the control torque is derived

directly from the energy of the acrobot. A model-free

fuzzy controller is designed to regulate its amplitude in

order to guarantee smooth movement from the swing-up

area into the attractive area.

3.1. Determining the control torque

  The energy of the acrobot is given by

E q q T q q V q( , &) ( , &) ( )  ,= + (5)

where T q q( , &)  is the kinetic energy and V q( ) is the

potential energy, both of which are expressed in

generalized coordinates. They are defined as follows:

T q q q M q qT( , &) & ( ) &, =
1

2
(6)

actuated joint

passive joint
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V q V q m gh qi i i
ii

( ) ( ) ( ),= =
==
∑∑

1

2

1

2

(7)

where V qi ( ) and h qi ( ) are the potential energy and the

height of the center of mass of the ith link, respectively.

  During an upswing, the energy of the acrobot should

increase continuously until it reaches the amount that the

acrobot has at the unstable straight-up equilibrium

position. This means that the derivation of the energy

should satisfy the following condition in the swing-up

area.

&( , &)E q q ≥ 0 . (8)

Differentiating (5) yields
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(9)

From (6), we obtain

∂
∂

∂
∂
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QP
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∂

∂
∂

L
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O
QP
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The following equation is derived from (7)

∂
∂

∂
∂

L
NM

O
QP
=

V q

q

V q

q
g q g q

( ) ( )
( ) ( )

1 2
1 2  . (12)

  Rewriting the dynamic equation (1) gives

&&

&&
( )

( , &) ( )

( , &) ( )

q

q
M q

c q q g q

c q q g q
1

2

1 1 1

2 2

L
NM
O
QP =

− −
− −
L
NM

O
QP

−  

 τ
. (13)

Substituting (10), (11), (12), and (13) into (9) yields

&( , &) &E q q q = 2τ . (14)

  So, the control torque for swing-up is chosen to be
τ υ= sign ,( & )q2 υ ≥ 0 (15)

to satisfy (8).

3.2. Design of model-free fuzzy controller

The control variable  υ in (15) can be chosen arbitrarily

in the admissible range of the control torque as long as it

is positive. Clearly, the amplitude of the control torque

should be chosen so that it decreases as the energy

increases. That makes the acrobot enter the attractive area

Table 1. Fuzzy control rules to swing the acrobot up.

If Then
E q q( , &) is small υ  is large

E q q( , &) is medium υ is medium

E q q( , &)  is large υ is small

smoothly when the control law changes. To implement

this strategy, a model-free fuzzy controller is designed to

determine the control variable υ.

A basic fuzzy control method ([2] and [5]) is used to

design the model-free fuzzy controller. The fuzzy relation
between the energy E q q( , &)  and the control variable υ is

the set of simple fuzzy rules listed in Table 1.

  The input of the model-free fuzzy controller is the
energy E q q( , &)  and the output is the control variable υ .

The membership functions (mfs) for input/output

linguistic variable are chosen to have the triangular shapes

shown in Figure 2.

The model-free fuzzy controller is employed until the

acrobot enters the attractive area. Then the fuzzy

controller based on a Takagi-Sugeno fuzzy model

balances it.

4.   
The attractive area is defined as q1 1 1   ∈ −[ , ]λ λ  and

q q1 2 2 2+  ∈ −[ , ]λ λ . The dynamics of the acrobot in this

area is nonlinear, and a linear approximate model around

the unstable straight-up equilibrium position is usually

used for control. However, linearizing it by using only the

coordinate of the unstable straight-up equilibrium position

makes either the attractive area very small, or the control

torque for the acrobot entering the area very large. For
example, if λ1  and λ 2  are both π / 4, then q2  is in the

range [ , ]− − +λ λ λ λ1 2 1 2 =  [ / , / ]−π π2 2 . Clearly,

cos( )q2 , which is involved in the dynamics, cannot be

well approximated over such a wide range. To achieve

better control, the model in this area needs to be described

more precisely.

Figure 2. Membership functions of the input/output
linguistic variable.

CONTROL IN THE ATTRACTIVE AREA
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Takagi and Sugeno ([13]) have introduced a model-

based analytical method into fuzzy control (Takagi-

Sugeno fuzzy model). The main feature of a Takagi-

Sugeno fuzzy model is that the local dynamics of each

fuzzy implication is described by a linear model. The

overall fuzzy model of the system is a fuzzy blend of the

linear models. The Takagi-Sugeno fuzzy modeling method

is a multiple model approach that can handle uncertain

and time-varying situations. To design a model-based

fuzzy controller, a set of fuzzy rules is first used to derive

suitable local linear state space models. Then, a set of

local controllers is designed based on the models using the

parallel distributed compensation method. Finally, the

fuzzy controller is obtained by the fuzzy blending of the

local controllers. This method gives us a more suitable

way to describe the nonlinearity of the acrobot in the

attractive area. The dynamics of the acrobot in this area is

captured by a set of fuzzy implications that characterize

local relations. When the fuzzy controller obtained by the

fuzzy blending of the local controllers is used to balance

the acrobot, the stability of the fuzzy control system for

balance control is guaranteed if a common symmetric

positive definite matrix can be found for all local linear

models.

4.1. Takagi-Sugeno fuzzy model

To reduce the design effort and complexity, as few

rules as possible are chosen. The Takagi-Sugeno fuzzy

system in the attractive area is shown in Table 2, where

z q q= 1 2/ , x x x x x= [ ]1 2 3 4   T= [ & & ]q q q q1 2 1 2   T, c1  and c2

are constants, and c c1 2 0> > .

It is clear that two linear models are used to describe

the acrobot. In Rule 1, the acrobot is linearized with the

coordinate xδ δ=     [ ]0 0 0 T; and in Rule 2, it is linearized

with the coordinate xθ θ= [ ]0 0 0    T (where θ δ> ≥ 0 ).

In the attractive area, q1 1 1   ∈ −[ , ]λ λ  and q q1 2+ ∈

[ , ]−λ λ2 2 . Since λ1 and λ 2  are very small, sin q1 and

sin( )q q1 2+  can be approximated by q1 and q q1 2+ ,

respectively. According to equation (1), the linear approxi-

mate model for the coordinate xφ φ= [ ]0 0 0   T (where

x x xφ δ θ=  or ) is as follows:

Table 2. Takagi-Sugeno fuzzy system for the acrobot.

Rule If Then
1 z is larger than c1 &x A x B= +1 1τ
2 z is smaller than c2  &x A x B= +2 2τ

& ( ) ( )x A x B= +φ φ τ , (16a)

where

A
a a

a a

B
b

b

( )
( ) ( )

( ) ( )

; ( )
( )

( )

,φ
φ φ
φ φ

φ
φ
φ

=

L

N

MMMM

O

Q

PPPP
=

L

N

MMMM

O

Q

PPPP

0 0 1 0

0 0 0 1

0 0

0 0

0

0

31 32

41 42

3

4

 (16b)

q
T

φ φ= 0 ,

a a b

a a b

M q

M q
41 42 4

31 32 3

1

0

( ) ( ) ( )

( ) ( ) ( )

( )

det ( )

φ φ φ
φ φ φ

β β
α β β

φ

φ

   

   

           

    

−
− −
L
NM

O
QP =

−
+ −
L
NM

O
QP ,

α = − +( )m L m L gg1 1 2 1 ,  β = −m L gg2 2 .

Substituting the coordinates xδ  and xθ  into (16b)

yields the following two local linear models ( , )A B1 1 =
( ( ), ( ))A Bδ δ  and ( , ) ( ( ), ( ))A B A B2 2  = θ θ , respectively.

So, the dynamics of the approximate fuzzy model is

represented by

& ( )( ) / ( )x z A x B zj j j
j j

j
= +

= =
∑ ∑µ τ µ

1

2

1

2

 , (17)

where µ1( )z  and µ 2 ( )z  are the membership functions

for Rules 1 and 2, respectively. They are defined as

µ
π

1

2

1 2

1 2
2 1

1

0 0

1

2

1

2 2

1

( )

;

sin ( );

;

z

z c

c c
z

c c
c z c

z c

=

≤ ≤

+
−

−
+

< ≤

R
S
||

T
||

                                             

 

                                               >

(18a)

µ µ2 11( ) ( )z z= − , (18b)

and shown in Figure 3.

4.2. Design of fuzzy controller

The concept of parallel distributed compensation ([14] and

[16]) is utilized to design local controllers. The basic idea

Figure 3. Membership functions µ1( )z  and µ 2 ( )z .
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Table 3. The local linear controllers.

Rule If Then
1 z is larger than c1 τ = −F x1

2 z is smaller than c2  τ = −F x2

is to design a corresponding controller for each local

linear model. This paper employs the pole assignment

approach to design the local linear controllers. The full

state is assumed to be available and the design results are

given in Table 3. Finally, the resulting overall fuzzy

controller obtained by the fuzzy blending of the individual

linear controllers is

τ µ µ= −
= =
∑ ∑j j
j

j
j

z F x z( ) / ( )
1

2

1

2

. (19)

This is used to balance the acrobot. Controller (19) is

nonlinear in general. It is clear that the parallel distributed

compensation method employs two controllers with

automatic switching via fuzzy rules.

Substituting (19) into (17) yields the following fuzzy

control system:

&

( ) ( )( )

( ) ( )
x

z z A B F x

z z

j
k

k j j k
j

j
k

k
j

=
−

==

==

∑∑

∑∑

µ µ

µ µ

1

2

1

2

1

2

1

2 . (20)

To guarantee stability, the results in [14] and [16] were

applied to the fuzzy control system (20), and the following

sufficient condition for stability was obtained.

Theorem 1: The fuzzy control system (20) is

asymptotically stable at the unstable straight-up

equilibrium position if there exists a common symmetric

positive definite matrix P such that the following LMIs

hold:

( ) ( ) ,A B F P P A B Fj j k
T

j j k− + − < 0   j, k = 1, 2 (21)

It is known that finding the matrix P is a convex

feasibility problem. Great efforts have been devoted to

solving this problem. A trial-and-error procedure ([15])

has been tried. Now, this problem can be solved efficiently

by using the interior-point method ([7]).

Table 4. Parameters of the acrobot for simulation.

mi [kg] Li [m]  Lgi [m] Ii [ Nm2 ]
Link 1 1 1 0.5 0.083
Link 2 1 2 1 0.33

5. SIMULATION
The parameters of the acrobot are given in Table 4

([11]). The parameters λ1 and λ 2  are chosen to be

λ λ π1 2 4= = /   (22)

to divide the motion space. The parameters c c1 2, ,   δ and

θ  are chosen to be

c c1 24 0 1

0 4

= =
= =
RST

    

    

.

/ .δ θ π
 (23)

For the attractive area, substituting δ θ,   and the

parameters in Table 4 into (16b) yields two local linear
models: ( , )A B1 1  and ( , )A B2 2 . Two local controllers are

designed by applying the method of parallel distributed
compensation to ( , )A B1 1  and ( , )A B2 2 . The local

feedback gains F1 and F2  are determined by selecting (-2,

–2.2, –2.4, –2.6) as the eigenvalues of the local linear

subsystems. The overall parallel distributed compensation

controller is

τ µ µ= − −1 1 2 2( ) ( )z F x z F x . (24)

A symmetric positive definite matrix P is obtained by

using the LMI algorithm. So, the fuzzy control system is

asymptotically stable for fuzzy control law (24).

  Let the energy of the acrobot in the horizontal position

be zero, then the energy at the unstable straight-up

equilibrium position is 24.5 J, and the energy range is

[-24.5 J, 24.5 J]. Assume that the maximum torque is 3

Nm, then the range of the control torque is [-3 Nm, 3 Nm].

Figure 4 shows simulation results for the initial
condition x( ) [ ]0 0 0 0= π T. When 0 7 63≤ <t .  s , the

model-free fuzzy controller is used for swing-up control.

The energy keeps increasing and the amplitude of the

control torque keeps decreasing during this period. When

t ≥ 7 63.  s , the model-based fuzzy controller is used for

balancing control. The simulation results show that the

response is very soft when the control law changes, and

the control torque in attractive area is very small; the state

converges smoothly to the unstable straight-up

equilibrium position.

6. CONCLUSIONS
A control strategy combining model-free and model-

based fuzzy control has been developed for controlling an

acrobot. The model-free fuzzy controller is used for

swing-up control. It is designed to guarantee that the

energy of the acrobot increases with each swing, and the

amplitude of the control torque decreases as the energy

increases. This strategy ensures a soft switching of the
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control laws when the acrobot passes from the swing-up

area into the attractive area. The model-based fuzzy

controller is used for balance control and is designed by

combining the Takagi-Sugeno fuzzy model with the

method of parallel distributed compensation. The stability

of the fuzzy control system for balance control is

guaranteed by a common symmetric positive matrix.

Simulation results have demonstrated the validity of the

method.
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Figure 4. Simulation results.
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