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Abstract: The final step in zinc hydrometallurgy is the
electrolytic process. The most important parameters to control the
process are the concentrations of zinc and sulfuric acid in the
electrolyte. This paper proposes an expert control strategy for
determining and tracking the optimal concentrations, which uses
neural networks, rule models and a single-loop control scheme.
First, the process is described and the strategy that features an
expert controller and three single-loop controllers is explained.
Next, neural networks and rule models are constructed based on
statistical data and empirical knowledge on the process. Then, the
expert controller for determining the optimal concentrations is
designed through a combination of the neural networks and rule
models. The three single-loop controllers use the PI algorithm to
track the optimal concentrations. Finally, the results of actual runs
using the strategy are presented. They show that the strategy
provides not only high-purity metallic zinc, but also significant
economic benefits.
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1. Introduction

The three basic steps in zinc hydrometallurgy are
leaching, purification and electrolysis. The electrolytic
process involves passing an electrical current through
insoluble electrodes to cause the decomposition of an
aqueous zinc sulfate electrolyte and the deposition of
metallic zinc at the cathode (Zhuzhou Smeltery, 1973). The
control objective is to recover as much zinc as possible
from the electrolyte as a high-purity product. To achieve
this, it is imperative to maintain the optimal electrolysis
conditions and reduce the electrical power consumed.

The electrolytic conditions are affected by many factors,
such as the concentrations of zinc, sulfuric acid and
impurities in the electrolyte; the current density at the
cathode; and the temperature of the electrolyte. For general
operation, the most important factors are the concentrations
of zinc and sulfuric acid, so they must be closely controlled.
On the other hand, a key factor influencing the power
consumption is the current efficiency. Less power is

consumed as the current efficiency increases. Optimizing
and tracking the concentrations of zinc and sulfuric acid,
and improving the current efficiency are primary tasks in
the control. Because of the complexity of the relationships
among the factors, this process is usually controlled
manually. Recently, computer monitoring and control have
been developed to do this job; but they do not often provide
the desired performance because they are based solely on
mathematical models, which do not describe the exact
relationships among the key factors (Gui and Wu, 1995;
Tang et al., 1996).

Artificial intelligence techniques are steadily advancing
and now constitute a powerful method of controlling
complex processes; and their extensive applications to
engineering problems has proven their effectiveness. Expert
systems and neural networks are two rapidly growing areas.
Expert systems have been widely studied and used for
process control (Efstathiou, 1989; Ishizuka and Kobayashi,
1991; The Society of Chemical Engineers, 1993; Wu, et al.,
1996). Such systems use the empirical knowledge of human
experts in a specific domain to solve a problem. Neural
networks are powerful tools for the modeling, identification
and control (Rumelhart, et al., 1986; Narendra and
Parthasarathy, 1990; Hagan, et al., 1996). Among them, the
backpropagation network has been used the most in process
control applications (McAvoy, 1997). The electrolysis is a
complex chemical process, and the operating parameters
generally have a very narrow range. The relationships
among the factors can be expressed through a combination
of neural networks and rule models based on statistical data
and empirical knowledge on the process. This means that
expert systems and neural networks should be able to
provide good control of the electrolytic process.

This paper concerns an expert control strategy using
neural networks for the electrolytic process. The strategy
employs four backpropagation networks and a number of
rule models, which express the relationships among main
factors, to determine the optimal concentrations of zinc and
sulfuric acid in the electrolyte. In addition, it uses a single-
loop control scheme to track the optimal concentrations, so
as to obtain high-purity metallic zinc and improve the
current efficiency as much as possible. This paper first
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describes the process and the strategy. Secondly,
backpropagation networks and rule models are constructed
based on statistical data and empirical knowledge. Third, an
expert controller for determining the optimal concentrations
is designed through a combination of the backpropagation
networks and rule models. Three single-loop controllers
using the PI algorithm are employed to track the optimal
concentrations. Fourth, the results of actual runs are
presented. Finally, some conclusions are given.

2. Process description and control strategy

The electrolytic process that was the subjective of this
study uses low-zinc, low-acid electrolysis technology. The
expert control strategy is proposed for this process.

2.1. Process description

In the process, the electrolyzing cells are arranged in
four cascade series, and 240 electrolyzing cells are serially
connected in each series. The electrolyte is added to the
cells, and is a mixture of new electrolyte obtained through
the purification and spent electrolyte returned from the
process. The flow rate of new electrolyte is controlled by
regulating the speeds of three pumps, while that of the spent
electrolyte is largely fixed. Passing an electrical current
through the cathodes and anodes of the cells causes the
chemical reaction

2 2 2 24ZnSO H O Zn H SO O2 2 4 2+ = + + A . (1)

This result in the deposition of metallic zinc at the cathode,
and the formation of sulfuric acid. Part of the spent
electrolyte is cooled and cycled back into the process, and
part is returned to the leaching (Zhuzhou Smeltery, 1973).

To achieve the control objectives, the factors influencing
the electrolysis conditions must be kept within given ranges.
The following constraints must be satisfied.

(i) The concentrations of zinc and sulfuric acid are
within the ranges 45 - 60 g/l and 150 - 200 g/l, respectively,
and the ratio of the hydrogen ion concentration to the zinc
ion concentration must be 3.0 - 3.8.

(ii) The temperature of the electrolyte is 30 - 38 ℃.
(iii) The current density is 450 - 600 A/m2.
(iv) The components (Zn, Cu, Cd and Co, etc.) of the

new electrolyte are within the standard allowable ranges.

Constraint (ii) is satisfied by cooling the spent
electrolyte to be added, and constraints (iii) and (iv) are met
by two designed systems (Wu, et al., 1993 and 1996).

Statistical data and empirical knowledge show that the
current efficiency is mainly affected by the concentrations
of zinc and sulfuric acid, the temperature and the current
density. Therefore, the key points are to determine the
optimal concentrations of zinc and sulfuric acid for the
given temperature and current density, and to track the

optimal concentrations, so as to satisfy constraint (i) and
improve the current efficiency as much as possible.

2.2. Control strategy

An expert control strategy is proposed to achieve the
control objectives. It uses an expert controller and three 761
series single-loop controllers.

The concentrations of zinc and sulfuric acid are set by
adjusting the flow rate of the new electrolyte mixed with the
spent electrolyte. The expert controller uses a forward
chaining strategy based on a combination of
backpropagation networks and rule models to determine the
optimal concentrations of zinc and sulfuric acid, and to
compute the target flow rate of new electrolyte, so as to
yield high-purity metallic zinc and the maximum current
efficiency.

Three 761 controllers use the PI control algorithm to
track the target flow rate, so as to ensure that the actual
concentrations of zinc and sulfuric acid match the optimal
values. More specifically, the three control loops are
constructed based on the 761 controllers, inverters, pumps
and flow meters. The 761 controllers regulate the speeds of
three pumps by means of inverters.

3. Neural networks and rule models

The relationships among the current efficiency, the
concentrations of zinc and sulfuric acid, the current density
and the temperature have very strong nonlinearity, which
make them difficult to express using mathematical models
alone. However, they can be described by a combination of
backpropagation networks and rule models based on
statistical data and empirical knowledge, where the rule
models are production rules of the If-Then form.

3.1. Neural networks and training

The temperature of the electrolyte, xT , is divided into
six levels: xT < 30 , 30 32≤ <xT , ..., 36 38≤ <xT  and
xT < 38 . Four backpropagation networks, each with three
layers, BP3L1, BP3L2, BP3L3 and BP3L4, are constructed
for the middle four levels, 30 32≤ <xT , 32 34≤ <xT ,
34 36≤ <xT  and 36 38≤ <xT , respectively. The input
layer, hidden layer and output layer have three neurons,
nine neurons and one neuron, respectively.

In the input layer, the inputs of the three neurons are the
current density and the concentrations of zinc and sulfuric
acid, which are denoted by xI , xZ  and xS , respectively,
and their outputs are the same as the inputs. In the hidden
layer, the input and output of the i-th neuron are defined to
be

x w x w x w x bi i I I i Z Z i S S i= + + +, , ,   , (2a)

and



y xi i= tansig( ) , (2b)

where wi I, , wi Z,  and wi S,  are the weights of the signals
from the three neurons of the input layer to the i-th neuron
of the hidden layer, respectively, bi  is the bias of the i-th
neuron of the hidden layer, and tansig( )⋅  denotes the tan-
sigmoid transfer function, which has the form
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and maps the input to the interval (-1, 1) (Hagan, et al.,
1996). In the output layer, the input and output of the
neuron are defined to be
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, (4a)

and

η I Ox= , (4b)

where wi O,  is the weight of the signal from the i-th neuron
of the hidden layer to the neuron of the output layer, bO  is
the bias of the neuron of the output layer, η I  and is the
current efficiency.

Expressions (2) and (4) can be combined in expression
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i
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(5)
It express the relationship among η I , xI , xZ  and xS  for
a given range of temperatures. The weights wi I, , wi Z, ,
wi S,  and wi O, , and the biases bi  and bO  are determined
by training the backpropagation network.

To determine these weights and biases, a number of
statistical data are acquired from the process. These data are
classified into four sets for BP3L1, BP3L2, BP3L3 and
BP3L4 according to the temperature of the electrolyte, and
are used to train the four backpropagation networks. In the
training, the network inputs are xI , xZ  and xS ; the
network output is η I ; and the target output is the actual
value of the current efficiency, which is denoted by η A .
The network performance function, J, is the average of the
squared errors between the network outputs and the target
outputs, i.e.,

J
N

j jI A
j

N

= −
=
∑1 2

1

[ ( ) ( )]η η , (6)

where η I j( )  and η A j( )  are the j-th network outputs and
the j-th target outputs, and N is the total number of the
target outputs used in training.

The weights and biases of the networks are iteratively
adjusted to minimize J during training. A basic
backpropagation training algorithm (Rumelhart, et al.,
1986; Hagan, et al., 1996) is used to determine the weights
and biases. It employs the gradient of J to adjust the weights
and biases and minimize that function. The weights and
biases are moved in the direction of the negative gradient.

Let x kwb ( )  be the vector of current weights and biases,
g kwb ( )  be the current gradient, and γ wb k( )  be the current
learning rate. Then the training algorithm can be written as

x k x k k g kwb wb wb wb( ) ( ) ( ) ( )+ = −1 γ , (7a)

g k
J

x
kwb

wb

( ) ( )=
∂
∂

, (7b)

where k is the number of iterations.
The weights and biases of the four backpropagation

networks are determined by off-line training. When the
environment and operating conditions of the electrolytic
process are changed, it is necessary to determine the
weights and biases afresh.

3.2. Rule Models

In the electrolytic process, there is an interaction
between the concentrations of zinc and sulfuric acid in the
electrolyte because these concentrations are determined in
part by the flow rate of new electrolyte mixed with the
spent electrolyte. This interaction makes it is difficult to
determine the optimal concentrations by using BP3L1,
BP3L2, BP3L3 or BP3L4 alone. To determine the best
concentrations of zinc and sulfuric acid that can be achieved
by adjusting the flow rate of the new electrolyte and that
will yield high-purity metallic zinc and the highest possible
current efficiency, we need to construct rule models based
on the empirical knowledge and data.

All rule models use the If-Then form (Efstathiou, 1989)
and are numbered by R# .

In constructing rule models, empirical knowledge is
acquired mainly from interviews with experienced
engineers and operators working on the process. For
instance, an efficient empirical method of determining the
optimal concentrations of zinc and sulfuric acid in the
electrolyte is used. More specifically, the optimal ranges are
first determined from the temperature of the electrolyte and
the current density. Next, an initial concentration of zinc is
selected from the optimal range, and the appropriate target
flow rate is computed for the new electrolyte mixed with
the spent electrolyte. Then, the concentration of sulfuric
acid is estimated under the assumption that new electrolyte
is supplied at the computed target flow rate. If the estimate
is in the optimal range, the selected concentration of zinc
and the estimated concentration of sulfuric acid are used as
optimal values. If this is not the case, the selection,
computation and estimation procedures are repeated until
optimal concentrations are finally obtained.

Assume that xZS  is the selected concentration of zinc,
xNZ  and xOZ  are the concentrations of zinc in the new
electrolyte and spent electrolyte to be mixed, respectively,
and QO  is the flow rate of the spent electrolyte to be mixed.
Then the target flow rate of the new electrolyte is computed
by using the following empirical expression:



Q
k x x

x k x
QN

Z ZS OZ

NZ Z ZS
O=

−
−

, (8)

where kZ  is an empirically determined coefficient. Under
the assumption that new electrolyte is supplied at the
computed target flow rate QN , the concentration of
sulfuric acid in the electrolyte is estimated by using the
following empirical expression:

x
Q x Q x

k Q QSS
N NS O OS

S N O

=
+
+( )

, (9)

where xSS  is the estimated concentration of sulfuric acid,
xNS  and xOS  are the concentrations of sulfuric acid in the
new electrolyte and spent electrolyte to be mixed, and kS

is an empirically determined coefficient.
Rule models are used to select the backpropagation

network, determine the optimal ranges of the concentrations,
select the initial concentration of zinc from the optimal
range, and adjust the concentration of zinc in the optimal
range. Table 1 shows some typical rule models used to
determine the optimal concentrations of zinc and sulfuric
acid, where U Z  and U S  are the optimal ranges of the
concentrations of zinc and sulfuric acid, respectively; xZopt

and xSopt  are the optimal concentrations of zinc and
sulfuric acid, respectively; QNopt  is the target flow rate of
new electrolyte; and ∆x  is an empirically determined
value.

4. Design of the expert controller

An expert controller was designed to determine the
optimal concentrations of zinc and sulfuric acid in the
electrolyte, and the corresponding target flow rate of new
electrolyte. It uses a reasoning strategy based on forward
chaining and a combination of the constructed backpropa-
gation networks and rule models.

4.1. Structure of the expert controller

The expert controller consists of a characteristics-
capturing mechanism, a knowledge base, a database, an
inference engine, and a man-machine interface.

The characteristics-capturing mechanism handles
process data to obtain data on characteristics. These data are
used by the database, knowledge base and inference engine.

The knowledge base stores the backpropagation
algorithms, rule models,  empirical data and operating
laws for the process; calculation laws; etc. The database
stores the quality requirements, measured data and
statistical data on the process; reasoning results from the
inference engine; etc.

The inference engine gets the empirical knowledge and
data from the knowledge base and database, and uses a
reasoning strategy based on forward chaining (Efstathiou,

1989) and a combination of the backpropagation networks
and rule models to determine the optimal concentrations of
zinc and sulfuric acid, and the corresponding target flow
rate of new electrolyte, so as to yield high-purity zinc and
the maximum current efficiency.

The man-machine interface is used to edit and modify
the knowledge base, and to display and print the results, etc.

4.2. Algorithm for determining optimal concentrations

A flow chart of the reasoning strategy used in the expert
controller is shown in Fig. 1. The reasoning strategy is
implemented in an algorithm. The algorithm is used to
determine the optimal concentrations and compute the
target flow rate is as follows:

Step 1:  Collect the temperature xT , the current density
xI , the concentrations xNZ , xOZ , xNS  and xOS , and the
flow rate QO .

Step 2:  Obtain data on the characteristics of the
temperature xT  by characteristics-capturing, and fire a rule
model such as R EC1  to select the corresponding
backpropagation network.

Step 3:  Determine the optimal ranges U Z  and U S  of
the concentrations of zinc and sulfuric acid by computing
the current efficiency based on the selected network, as so
to yield the maximum current efficiency.

Step 4:  Set the concentration of zinc to

x
U U

ZS
Z Z=
+max(

~
) min(

~
)

2
. (10)

Step 5:  Compute the target flow rate QN  of new
electrolyte from expression (8), and estimate the
concentration xSS  of sulfuric acid from expression (9).

Step 6:  Check if x USS S∈ . If so, execute rule model
R EC6  to obtain the optimal concentrations of zinc and
sulfuric acid and the target flow rate of new electrolyte, and
stop this algorithm. If not, go to the next step.

Step 7:  Check if x UZS Z= max( )  or x UZS Z= min( ) .
If so, fire rule models such as R EC4  and R EC5  and go to
the next step. If not, adjust xZS  so that it is in U Z  by rule
models such as R EC2  and R EC3 , and return to Step 5.

Step 8:  Determine the optimal ranges U Z  and U S  of
the concentrations of zinc and sulfuric acid by computing
the current efficiency based on the selected network, so as
to yield the highest current efficiency, and return to Step 4.

The optimal concentrations determined in the above
algorithm are achieved by tracking the corresponding target
flow rate of new electrolyte.

5. Some results of actual runs

The proposed expert control strategy is using in a
nonferrous metals smeltery. It not only provides high-purity
metallic zinc, but also yields significant economic benefits.



Table 1. Some typical rule models for determining the optimal concentrations.

Fig. 1. Flow chart of reasoning using combination of backpropagation networks and rule models.

Some results of actual runs are shown in Fig. 2. The
dotted lines indicate the constraints on the electrolysis
conditions given in Section 2.1.

When the concentrations of the components of the new
electrolyte used fall within the standard allowable ranges,
and the temperature of the electrolyte and the current
density satisfy the constraints given in Section 2.1, the
optimal concentrations of zinc and sulfuric acid in the
electrolyte are determined by the designed expert controller
and tracked by the 761 controllers. In this case, the
electrolysis conditions are optimal and the optimal
electrolysis conditions are maintained. It is clear that the

optimal concentrations of zinc and sulfuric acid and the
ratio of the hydrogen ion concentration to the zinc ion
concentration satisfy the constraints given in Section 2.1.

Statistical data on the electrolytic process shows not
only that high-purity metallic zinc is obtained, but also that
the power consumption for electrolysis is considerably
reduced. In particular, compared with the results for control
based on the conventional method, the purity of metallic
zinc is improved from 99.990 - 99.995 % to 99.9999 %, and
the current efficiency is about 4.2 % higher, which mean
that the power consumption per ton of zinc used for
recovery is about 200 - 400 kwh lower.
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Fig. 2. Some results of actual runs.

6. Conclusions

This paper has describes an expert control strategy using
backpropagation networks, which is currently being used
for the electrolytic process of a nonferrous metals smeltery.
The results of actual runs show that the proposed strategy
effectively control the electrolytic process. The main
features are as follows:

(1) Backpropagetion networks and rule models that
express the complex relationships among the factors
influencing the electrolysis conditions and electrical power
consumption are constructed based on statistical data and
empirical knowledge on the process.

(2) The optimal concentrations of zinc and sulfuric acid
and the corresponding target flow rate of new electrolyte
are determined by a reasoning strategy that combines

backpropagation networks and rule models, and uses
forward chaining.

(3) The optimal electrolysis conditions are maintained
by tracking the target flow rate of new electrolyte, while the
tracking is implemented by conventional single-loop control
technique.

(4) The proposed strategy provides not only high-purity
metallic zinc, but also significant economic benefits.
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